Kybernetika 56 no. 4, 821-841, 2020

A generalised proportional-derivative force/vision controller for torque-driven planar robotic manipulators

Carlos Vidrios-Serrano, Marco Mendoza, Isela Bonilla and Berenice Maldonado-FregosoDOI: 10.14736/kyb-2020-4-0821


In this paper, a family of hybrid control algorithms is presented; where it is merged a free camera-calibration image-based control scheme and a direct force controller, both with the same priority level. The aim of this generalised hybrid controller is to regulate the robot-environment interaction into a two-dimensional task-space. The design of the proposed control structure takes into account most of the dynamic effects present in robot manipulators whose inputs are torque signals. As examples of this generalised structure of hybrid force/vision controllers, a linear proportional-derivative structure and a nonlinear proportional-derivative one (based on the hyperbolic tangent function) are presented. The corresponding stability analysis, using Lyapunov's direct method and invariance theory, is performed to proof the asymptotic stability of the equilibrium vector of the closed-loop system. Experimental tests of the control scheme are presented and a suitable performance is observed in all the cases. Unlike most of the previously presented hybrid schemes, the control structure proposed herein achieves soft contact forces without overshoots, fast convergence of force and position error signals, robustness of the controller in the face of some uncertainties (such as camera rotation), and safe operation of the robot actuators when saturating functions (non-linear case) are used in the mathematical structure. This is one of the first works to propose a generalized structure of hybrid force/vision control that includes a closed loop stability analysis for torque-driven robot manipulators.


stability, control, robot manipulator, force, vision


68T40, 93C85, 93D05


  1. S. Aghaie, S. Khanmohammadi, H. Moghadam-Fard and F. Samadi: Adaptive vision-based control of robot manipulators using the interpolating polynomial. Trans. Inst. Meas. Control 36 (2014), 6, 837-844.   DOI:10.1177/0142331214523307
  2. M. Bdiwi, A. Winkler, J. Suchy and G. Zschocke: Traded and shared vision-force robot control for improved impact control. In: Proc. of the 18th IEEE International Multi-Conference on Systems, Signals and Devices, Sousse 2011, pp. 154-159.   DOI:10.1109/ssd.2011.5981425
  3. R. Carelli, E. Oliva, C. Soria and O. Nasisi: Combined force and visual control of an industrial robot. Robotica 22 (2004), 2, 163-171.   DOI:10.1017/s0263574703005423
  4. C. Chávez-Olivares, F. Reyes-Cortés and E. González-Galván: On explicit force regulation with active velocity damping for robot manipulators. Automatika 56(4) (2015), 478-490.   DOI:10.1080/00051144.2015.11828661
  5. C. Chávez-Olivares, F. Reyes-Cortés and E. González-Galván: On stiffness regulators with dissipative injection for robot manipulators. Int. J. Adv. Rob. Syst. 12 (2015), 6, 65.   DOI:10.5772/60054
  6. S. Chiaverini and L. Sciavicco: The parallel approach to force/position control of robotic manipulators. IEEE Trans. Rob. Autom. 9 (1993), 4, 361-373.   DOI:10.1109/70.246048
  7. P. Corke: Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer-Verlag, London 2017.   DOI:10.1007/978-3-319-54413-7
  8. N. Hogan: Stable execution of contact tasks using impedance control. In: Proc. of the IEEE International Conference on Robotics and Automation, Raleigh 1987, pp. 1047-1054.   DOI:10.1109/robot.1987.1087854
  9. Y. Huang, X. Zhang, X. Chen and J. Ota: Vision-guided peg-in-hole assembly by baxter robot. Adv. Mech. Eng. 9 (2017), 12, 168781401774807.   DOI:10.1177/1687814017748078
  10. S. Hutchinson, G. D. Hager and P.I. Corke: A tutorial on visual servo control. IEEE Trans. Rob. Autom. 12 (1996), 5, 651-670.   DOI:10.1109/70.538972
  11. R. Kelly: Robust asymptotically stable visual servoing of planar robots. IEEE Trans. Rob. Autom. 12 (1996), 5, 759-766.   DOI:10.1109/70.538980
  12. R. Kelly, V. Santibáñez-Dávila and J. A. Loría-Perez: Control of Robot Manipulators in Joint Space. Springer-Verlag, London 2006.   CrossRef
  13. X. Li, Y.H. Liu and H. Yu: Iterative learning impedance control for rehabilitation robots driven by series elastic actuators. Automatica 90 (2018), 1-7.   DOI:10.1016/j.automatica.2017.12.031
  14. V. Lippiello, B. Siciliano and L. Villani: A position-based visual impedance control for robot manipulators. In: Proc. of the IEEE International Conference on Robotics and Automation, Roma 2007, pp. 2068-2073.   DOI:10.1109/robot.2007.363626
  15. V. Lippiello, B. Siciliano and L. Villani: Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration. IEEE Trans. Rob. 23 (2007), 1, 73-86.   DOI:10.1109/tro.2006.886832
  16. P. Long, W. Khalil and P. Martinet: Robotic cutting of soft materials using force control and image moments. In: Proc. of the 13th International Conference on Control Automation Robotics and Vision, Singapore 2014, pp. 474-479.   DOI:10.1109/icarcv.2014.7064351
  17. Y. Mezouar, M. Prats and P. Martinet: External hybrid vision/force control. In: Proc. of the IEEE International Conference on Advanced Robotics, Jeju 2007, pp. 170-175.   CrossRef
  18. A.J. Muñoz-Vázquez, V. Parra-Vega, A. Sánchez-Orta and F. Ruiz-Sánchez: A novel force-velocity field for object manipulation with a model-free cooperative controller. Trans. Inst. Meas. Control 41 (2019), 2, 573-581.   DOI:10.1177/0142331218762272
  19. V. Mut, O. Nasisi, R. Carelli and B. Kuchen: Tracking robust impedance robot control with visual feedback. In: Proc. of the 6th IFAC Symposium on Robot Control, Vienna 2000, pp. 69-74.   DOI:10.1016/s1474-6670(17)37907-7
  20. T. Nammoto, K. Kosuge and K. Hashimoto: Model-based compliant motion control scheme for assembly tasks using vision and force information. In: Proc. of the IEEE International Conference on Automation Science and Engineering, Wisconsin 2013, pp. 948-953.   DOI:10.1109/coase.2013.6653912
  21. B. J. Nelson and P. K. Khosla: Force and vision resolvability for assimilating disparate sensory feedback. IEEE Trans. Rob. Autom. 12 (1996), 5, 714-731.   DOI:10.1109/70.538976
  22. V. Ortenzi, N. Marturi, M. Mistry, J. Kuo and R. Stolkin: Vision-based framework to estimate robot configuration and kinematic constraints. IEEE/ASME Trans. Mechatron. 23 (2018), 5, 2402-2412.   DOI:10.1109/tmech.2018.2865758
  23. M. Prats, P. Martinet, A. P. Del Pobil and S. Lee: Robotic execution of everyday tasks by means of external vision/force control. Intell. Serv. Robot. 1 (2008), 3, 253-266.   DOI:10.1007/s11370-007-0008-x
  24. A. Rodriguez-Angeles and L.F. Vazquez-Chavez: Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems. Kybernetika 54 (2018), 1, 135-154.   DOI:10.14736/kyb-2018-1-0135
  25. M. Takegaki and S. Arimoto: A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103 (1981), 119-125.   DOI:10.1115/1.3139651
  26. H. Wang and Y. Xie: Adaptive jacobian position/force tracking control of free-flying manipulators. Rob. Auton. Syst. 57 (2009), 2, 173-181.   DOI:10.1016/j.robot.2008.05.003
  27. L. Yu, S. Fei, J. Huang, Y. Li, G. Yang and L. Sun: Robust neural network control of robotic manipulators via switching strategy. Kybernetika 51 (2015), 2, 309-320.   DOI:10.14736/kyb-2015-2-0309
  28. T. Yüksel: An intelligent visual servo control system for quadrotors. Trans. Inst. Meas. Control 41 (2019), 1, 3-13.   DOI:10.1177/0142331217751599
  29. C. Zhaik: Sweep coverage of discrete time multi-robot networks with general topologies. Kybernetika 50 (2014), 1, 19-31.   DOI:10.14736/kyb-2014-1-0019