Kybernetika 56 no. 4, 695-721, 2020

Efficiency evaluation of closed-loop supply chains with proportional dual-role measures

Monireh Jahani Sayyad Noveiri, Sohrab Kordrostami and Alireza AmirteimooriDOI: 10.14736/kyb-2020-4-0695


Data Envelopment Analysis (DEA) is a beneficial mathematical programming method to measure relative efficiencies. In conventional DEA models, Decision Making Units (DMUs) are usually considered as black boxes. Also, the efficiency of DMUs is evaluated in the presence of the specified inputs and outputs. Nevertheless, in real-world applications, there are situations in which the performance of multi-stage processes like supply chains with forward and reverse flows must be measured such that some of the intervening factors, called proportional dual-role factors, are presented that one part of each proportional dual-role factor plays the input role and the other plays the output role. To address this issue, the current study proposes radial and non-radial DEA models for evaluating the overall and stage efficiencies of the closed-loop supply chains when there are proportional dual-role factors. To illustrate, a proportional dual-role factor is divided into portions of the input of the first stage and the output of the second stage such that the optimal overall and stage efficiency scores of closed-loop supply chain are obtained. A case study is used to illustrate the proposed approach. The experimental results obtained from real world data show the convincing performance of our proposed method.


efficiency, data envelopment analysis (DEA), closed-loop supply chain, proportional dual-role factor, input/output


90C05, 90B50, 90C90


  1. A. Amirteimoori: A DEA two-stage decision processes with shared resources. Cent. Eur. J. Oper. Res. 21 (2013), 141-151.   DOI:10.1007/s10100-011-0218-3
  2. A. Amirteimoori and L. Khoshandam: A data envelopment analysis approach to supply chain efficiency. Adv. Decision Sci. 8 (2011), 1-8.   DOI:10.1155/2011/608324
  3. A. Amirteimoori, L. Khoshandam and S. Kordrostami: Recyclable outputs in production process: a data envelopment analysis approach. Int. J. Oper. Res. 18 (2013), 62-70.   DOI:10.1504/ijor.2013.055529
  4. A. Amirteimoori, S. Kordrostami and H. Azizi: Additive models for network data envelopment analysis in the presence of shared resources. Transport. Res. D-Tr. E. 48 (2016), 411-424.   DOI:10.1016/j.trd.2015.12.016
  5. A. Amirteimoori, A. Toloie-Eshlaghi and M. Homayoonfar: Efficiency measurement in Two-Stage network structures considering undesirable outputs. Int. J. Industr. Math. 6 (2014), 65-71.   CrossRef
  6. A. Amirteimoori and F. Yang: A DEA model for two-stage parallel-series production processes. RAIRO-Oper. Res. 48 (2014), 123-134.   DOI:10.1051/ro/2013057
  7. K. B. Atici and V. V. Podinovski: Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture. Omega 54 (2015), 72-83.   DOI:10.1016/
  8. S. Avilés Sacoto, D. G. Castorena, W. D. Cook and H. C. Delgado: Time-staged outputs in DEA. Omega 55 (2015), 1-9.   DOI:10.1016/
  9. S. Aviles-Sacoto, W. D. Cook, R. Imanirad and J. Zhu: Two-stage network DEA: when intermediate measures can be treated as outputs from the second stage. J. Oper. Res. Soc. 66 (2015), 1868-1877.   DOI:10.1057/jors.2015.14
  10. N. K. Avkiran: An illustration of dynamic network DEA in commercial banking including robustness tests. Omega 55 (2015), 141-150.   DOI:10.1016/
  11. H. Balfaqih, Z. M. Nopiah, N. Saibani and M. T. Al-Nory: Review of supply chain performance measurement systems: 1998-2015. Comput. Ind. 82 (2016), 135-150.   DOI:10.1016/j.compind.2016.07.002
  12. J. E. Beasley: Comparing university departments. Omega 18 (1990), 171-183.   DOI:10.1016/0305-0483(90)90064-g
  13. J. E. Beasley: Determining teaching and research efficiencies. J. Oper. Res. Soc. 46 (1995), 441-452.   DOI:10.1057/jors.1995.63
  14. Y. Bian, N. Liang and H. Xu: Efficiency evaluation of Chinese regional industrial systems with undesirable factors using a two-stage slacks-based measure approach. J. Clean. Prod. 87 (2015), 348-356.   DOI:10.1016/j.jclepro.2014.10.055
  15. C. M. Chao, M. M. Yu and H. N. Wu: An application of the dynamic network DEA model: The case of banks in Taiwan. Emerg. Mark. Financ. Tr. 51 (2015), S133- S151.   DOI:10.1016/j.jclepro.2014.10.055
  16. A. Charnes and W. W. Cooper: Programming with linear fractional functionals. Na. Res. Logist. Q. 9 (1962), 181-186.   DOI:10.1002/nav.3800090303
  17. A. Charnes, W. W. Cooper and E. Rhodes: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978), 429-444.   DOI:10.1016/0377-2217(78)90138-8
  18. W. C. Chen: Revisiting dual-role factors in data envelopment analysis: derivation and implications. IIE. Trans. 7 (2014), 653-663.   DOI:10.1080/0740817x.2012.721943
  19. Y. Chen, J. Du, H. D. Sherman and J. Zhu: DEA model with shared resources and efficiency decomposition. Eur. J. Oper. Res. 207 (2010), 339-349.   DOI:10.1016/j.ejor.2010.03.031
  20. C. Chen and H. Yan: Network DEA model for supply chain performance evaluation. Eur. J. Oper. Res. 213 (2011), 147-155.   DOI:10.1016/j.ejor.2011.03.010
  21. W. D. Cook, R. H. Green and J. Zhu: Dual-role factors in data envelopment analysis. IIE. Trans. 38 (2006), 105-115.   DOI:10.1080/07408170500245570
  22. W. D. Cook and J. Zhu: Classifying inputs and outputs in data envelopment analysis. Eur. J. Oper. Res. 180 (2007), 692-699.   DOI:10.1016/j.ejor.2006.03.048
  23. D. K. Despotis, D. Sotiros and G. Koronakos: A network DEA approach for series multi-stage processes. Omega 61 (2016), 35-48.   DOI:10.1016/
  24. J. Du, Y. Chen and J. Huo: DEA for non-homogenous parallel networks. Omega 56 (2015), 122-132.   DOI:10.1016/
  25. L. Fang: Optimal budget for system design series network DEA model. J. Oper. Res. Soc. 65 (2014), 1781-1787.   DOI:10.1057/jors.2013.153
  26. R. Färe and S. Grosskopf: Network DEA. Socio. Econom. Plan. Sci. 34 (2000), 35-49.   DOI:10.1016/s0038-0121(99)00012-9
  27. R. Färe and S. Grosskopf: Productivity and intermediate products: A frontier approach. Econom. Lett. 50 (1996), 65-70.   DOI:10.1016/0165-1765(95)00729-6
  28. R. Färe and C. A. Knox Lovell: Measuring the technical efficiency of production. J. Econom. Theory. 19 (1978), 150-162.   DOI:10.1016/0022-0531(78)90060-1
  29. R. Färe and D. Primont: Efficiency measures for multiplant firms. Oper. Res. Lett. 3 (1984), 257-260.   DOI:10.1016/0167-6377(84)90057-9
  30. H. Fukuyama and W. L. Weber: Measuring Japanese bank performance: a dynamic network DEA approach. J. Prod. Anal. 44 (2015), 249-264.   DOI:10.1007/s11123-014-0403-1
  31. M. D. Heidari, M. Omid and A. Akram: Optimization of energy consumption of broiler production farms using data envelopment analysis approach. Modern Appl. Sci. 5 (2011), 69-78.   DOI:10.5539/mas.v5n3p69
  32. J. Johnes: Data envelopment analysis and its application to the measurement of efficiency in higher education. Econom. Educ. Rev. 25 (2006), 273-288.   DOI:10.1016/j.econedurev.2005.02.005
  33. C. Kao: Efficiency decomposition in network data envelopment analysis: A relational model. Eur. J. Oper. Res. 192 (2009), 949-962.   DOI:10.1016/j.ejor.2007.10.008
  34. C. Kao: Efficiency measurement for parallel production systems. Eur. J. Oper. Res. 196 (2009), 1107-1112.   DOI:10.1016/j.ejor.2008.04.020
  35. C. Kao and S. N. Hwang: Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008), 418-429.   DOI:10.1016/j.ejor.2006.11.041
  36. C. Kao and S. N. Hwang: Efficiency measurement for network systems: IT impact on firm performance. Decision Support Syst. 48 (2010), 437-446.   DOI:10.1016/j.dss.2009.06.002
  37. S. Kordrostami and M. Jahani Sayyad Noveiri: Evaluating the efficiency of decision making units in the presence of flexible and negative data. Indian. J. Sci. Technol. 5 (2012), 3776-3782.   CrossRef
  38. L. Liang, Z. Q. Li, W. D. Cook and J. Zhu: Data envelopment analysis efficiency in two-stage networks with feedback. IIE Trans. 43 (2011), 309-322.   DOI:10.1080/0740817x.2010.509307
  39. L. Liang, F. Yang, W. D. Cook and J. Zhu: DEA models for supply chain efficiency evaluation. Ann. Oper. Res. 145 (2006), 35-49.   DOI:10.1007/s10479-006-0026-7
  40. W. Liu, Z. Zhou, C. Ma, D. Liu and W. Shen: Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015), 74-87.   DOI:10.1016/
  41. S. Lozano: Alternative SBM Model for Network DEA. Comput. Ind. Eng. 82 (2015), 33-40.   DOI:10.1016/j.cie.2015.01.008
  42. S. Lozano: Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega 60 (2016), 73-84.   DOI:10.1016/
  43. S. Lozano, E. Gutiérrez and P. Moreno: Network DEA approach to airports performance assessment considering undesirable outputs. Appl. Math. Model. 37 (2013), 1665-1676.   DOI:10.1016/j.apm.2012.04.041
  44. J. Ma: A two-stage DEA model considering shared inputs and free intermediate measures. Expert. Syst. Appl. 42 (2015), 4339-4347.   DOI:10.1016/j.eswa.2015.01.040
  45. M. Maghbouli, A. Amirteimoori and S. Kordrostami: Two-stage network structures with undesirable outputs: A DEA based approach. Measurement 48 (2014), 109-118.   DOI:10.1016/j.measurement.2013.10.032
  46. E. Momeni, M. Tavana, H. Mirzagoltabar and S. M. Mirhedayatian: A new fuzzy network slacks-based DEA model for evaluating performance of supply chains with reverse logistics. J. Intell. Fuzzy Syst. 27 (2014), 793-804.   DOI:10.3233/ifs-131037
  47. H. Omrani and E. Soltanzadeh: Dynamic DEA models with network structure: An application for Iranian airlines. J. Air. Transp. Manag. 57 (2016), 52-61.   DOI:10.1016/j.jairtraman.2016.07.014
  48. J. T. Pastor, J. L. Ruiz and I. Sirvent: An enhanced DEA Russell graph efficiency measure. Eur. J. Oper. Res. 115 (1999), 596-607.   DOI:10.1016/s0377-2217(98)00098-8
  49. A. Rezaee and A. Esmaielzadeh: Application of data envelopment analysis to evaluation energy efficiency in broiler production farms (case study: Maku free zone). Animal. Sci. J. 30 (2018), 27-40.   CrossRef
  50. L. M. Seiford and J. Zhu: Profitability and marketability of the top 55 US commercial banks. Management Sci. 45 (1999), 1270-1288.   DOI:10.1287/mnsc.45.9.1270
  51. A. Shabani and R. Farzipoor Saen: Developing a novel data envelopment analysis model to determine prospective benchmarks of green supply chain in the presence of dual-role factor. Benchmark. Int. J. 22 (2015), 711-730.   DOI:10.1108/bij-12-2012-0087
  52. A. Tajbakhsh and E. Hassini: A data envelopment analysis approach to evaluate sustainability in supply chain networks. J. Clean. Prod. 105 (2015), 74-85.   DOI:10.1016/j.jclepro.2014.07.054
  53. M. Tavana, H. Mirzagoltabar, S. M. Mirhedayatian, R. Farzipoor Saen and M. Azadi: A new network epsilon-based DEA model for supply chain performance evaluation. Comput. Ind. Engrg. 66 (2013), 501-513.   DOI:10.1016/j.cie.2013.07.016
  54. M. Toloo, E. Keshavarz and A. Hatami-Marbini: Dual-role factors for imprecise data envelopment analysis. Omega 77 (2018), 15-31.   DOI:10.1016/
  55. K. Tone and M. Tsutsui: Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 197 (2009), 243-252.   DOI:10.1016/j.ejor.2008.05.027
  56. K. Tone and M. Tsutsui: Dynamic DEA with network structure: A slacks-based measure approach. Omega 42 (2014), 124-131.   DOI:10.1016/
  57. Q. L. Wei and T. S Chang: Optimal system design series-network DEA models. J. Oper. Res. Soc. 62 (2011), 1109-1119.   DOI:10.1057/jors.2010.45
  58. J. Wu, Q. Zhu, X. Ji, J. Chu and L. Liang: Two-stage network processes with shared resources and resources recovered from undesirable outputs. Eur. J. Oper. Res. 251 (2016), 182-197.   DOI:10.1016/j.ejor.2015.10.049
  59. F. Yang, D. Wu, L. Liang, G. Bi and D. D. Wu: Supply chain DEA: production possibility set and performance evaluation model. Ann. Oper. Res. 185 (2011), 195-211.   DOI:10.1007/s10479-008-0511-2
  60. J. Zhu: Models for Evaluating Supply Chains and Network Structures. In: Quantitative Models for Performance Evaluation And Benchmarking: Data Envelopment Analysis with Spreadsheets. Springer International Publishing: Cham. 2014, pp. 311-344.   DOI:10.1007/978-3-319-06647-9\_15