Kybernetika 48 no. 6, 1250-1265, 2012

Efficient algorithm to solve optimal boundary control problem for Burgers' equation

Alaeddin Malek, Roghayeh Ebrahim Nataj and Mohamad Javad Yazdanpanah


In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method is formulated for approximating the time-varying control by a finite term of the orthogonal functions with unknown coefficients determined through an optimization process. The minimization of the objective functional is performed by using a conjugate gradient method. The accuracy and convergent rate of this hybrid method are shown by some numerical examples .


optimal boundary control, Burgers' equation, conjugate gradient method, modal expansion technique, control parametrization


49M37, 35K55


  1. J. Baker, A. Armaou and P. D. Christofides: Nonlinear control of incompressible fluid flow: Application to Burgers' equation and 2D channel flow. J. Math. Anal. Appl. 252 (2000), 230-255.   CrossRef
  2. M. J. Balas: Active control of flexible systems. J. Optim. Theory 259 (1978), 415-436.   CrossRef
  3. J. M. Burgers: A mathematical model illustrating the theory of turbulence. Adv. in Appl. Mech. 1 (1948), 171.   CrossRef
  4. Y. Chang and T. Lee: Application of general orthogonal polynomials to the optimal control of time-varying linear systems. Internat. J. Control 43 (1986), 4, 1283-1304.   CrossRef
  5. J. D. Cole: On quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9 (1951), 225-236.   CrossRef
  6. R. F. Curtain and A. J. Pritchard: Functional Analysis in Modern Applied Mathematics. Academic Press, New York 1977.   CrossRef
  7. E. J. Dean and P. Gubernatis: Pointwise control of Burgers' equation - a numerical approach. Comput. Math. Appl. 22 (1991), 7, 93-100.   CrossRef
  8. J. R. Dormand and P. J. Prince: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980), 19-26.   CrossRef
  9. Y. Endow: Optimal control via Fourier series of operational matrix of integration. IEEE Trans. Automat. Control 34 (1989), 7, 770-773.   CrossRef
  10. R. Fletcher and C. M. Reeves: Function minimization by conjugate gradients. Comput. J. 7 (1964), 144-160.   CrossRef
  11. S. Guerrero and O. Yu. Imanuvilov: Remarks on global controllability for the Burgers' equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 897-906.   CrossRef
  12. H. Heidari and A. Malek: Optimal boundary control for hyperdiffusion equation. Kybernetica 46 (2010), 5, 907-925.   CrossRef
  13. B. B. King and D. A. Kruger: Burgers' equation: Galerkin least squares approximation and feedback control. Math, Comput. Modeling 38 (2003), 1078-1085.   CrossRef
  14. I. Kucuk and I. Sadek: A numerical approach to an optimal boundary control of the viscous Burgers' equation. Appl. Math. Comput. 210 (2009), 126-135.   CrossRef
  15. J. M. Lellouche, J. L. Devenon and I. Dekeyser: Boundary control on Burgers' equation. A numerical approach. Comput. Math. Appl. 28 (1994), 33-44.   CrossRef
  16. Y. Leredde, J. M. Lellouche, J. L. Devenon and I. Dekeyser: On initial, boundary condition and viscosity coefficient control for Burgers' equation. Internat. J. Numer. Meth. Fluids 28 (1998), 113-128.   CrossRef
  17. K. W. Morton and D. F. Mayers: Numerical Solution of Partial Differential Equations, An Introduction. Cambridge University Press 2005.   CrossRef
  18. A. W. Naylor and G. R. Sell: Linear Operator Theory in Engineering and Sciences. Appl. Math. Sci. 40, Springer-Verlag, New York 1982.   CrossRef
  19. H. M. Park, M. W. Lee and Y. D. Jang: An efficient compuational method of boundary optimal control problems for the Burgers' equation. Comput. Methods Appl. Mech. Engrg. 166 (1998), 289-308.   CrossRef
  20. I. S. Sadek and J. Feng: Modelling techniques for optimal control of distributed parameter systems. Math. Comput. Modelling 187 (1993), 41-58.   CrossRef
  21. H. R. Sirisena and F. S. Chou: State parameterization approach to the solution of optimal control problems. Optimal Control Appl. Methods 2 (1981), 289-298.   CrossRef