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In this paper, we propose a novel algorithm for solving an optimal boundary control problem
of the Burgers’ equation. The solving method is based on the transformation of the original
problem into a homogeneous boundary conditions problem. This transforms the original prob-
lem into an optimal distributed control problem. The modal expansion technique is applied
to the distributed control problem of the Burgers’ equation to generate a low-dimensional dy-
namical system. The control parametrization method is formulated for approximating the
time-varying control by a finite term of the orthogonal functions with unknown coefficients
determined through an optimization process. The minimization of the objective functional is
performed by using a conjugate gradient method. The accuracy and convergent rate of this
hybrid method are shown by some numerical examples .
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1. INTRODUCTION
Active control of fluid flows has been considered in significant researches [1, 12, 13].
Active control involves continuous adjustment of a variable that affects the flow based
on the measurements of the quantities of the flow field (feedback). Development of an
efficient control system for a fluid flow should be based on the specific Navier–Stokes
equations that describe the flow in order to exploit their ability to accurately predict the
spatiotemporal behavior of the flow field. Burgers’ equation is the simplest approxima-
tion that captures the nonlinear and non-planar aspects of the Navier–Stokes equation
and was proposed as a model for turbulence and the viscous structure of the weak shock
waves [3]. Thereby it is a useful tool for examining the robustness of numerical schemes
for optimal control problem of the Navier–Stokes equation.

The aim of optimal control is to find the best parameters of the model to simulate the
closest computed values to the observed ones. Some authors have already dealt with this
kind of problem for Burgers’ equation. Dean and Gubernatis [7] introduced a pointwise
control. Lellouche et al. [15] focused their study on the control by boundary conditions.
Since the control by boundary conditions is more influential than the control by initial
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conditions and by the viscosity coefficient [16], different numerical techniques for the
optimal control of Burgers’ equation with Neumann and Dirichlet boundary controls are
studied in [14, 19]. In [19] the problem is solved by employing the low dimensional model
using the Karhunen–Loeve Galerkin procedure, where the minimization of the objective
function is performed by using a conjugate gradient method (KLG-CG). In [14] the prob-
lem with two boundary controls and smooth target function is solved by transforming
it into a distributed one and applying the modal space approach. The parametrization
method is then implemented to approximate the control by finite terms of a Fourier series
type. The optimization problem is thereby reduced to a finite-dimensional minimization
problem which is solved by using simplex method.

This work proposes an efficient numerical approach for solving the optimal control
problem of the Burgers’ equation by using one boundary control. Objective functional
is determined by the distance between the final state at the terminal time and the tar-
get function over the spatial domain, and the energy depended on the boundary control
actuators over a given period of time. In [11] it was shown that one cannot reach an arbi-
trary target function in arbitrary time with the help of one control force for the Burgers’
equation. So to ensure that the target function is a reachable state, we determine it
by solving Burgers’ equation numerically with a given control function as a boundary
condition. In this procedure we compute an optimal control function that reduces the
cost expenditure of control effort in the objective functional respect to the given known
control function. For this purpose we transform the optimal boundary control problem
to one with distributed control; then the method of modal expansion is employed to
convert the distributed control problem to that of the optimal control of lumped pa-
rameter systems in a finite-dimensional space. Consequently, a direct approach, control
parametrization method, is followed. Finally a conjugate gradient method is performed
to minimize the objective functional.

Our work is organized in the following way. The optimal boundary control problem is
proposed in the second section. In the next three sections the modal expansion technique,
control parametrization approach and conjugate gradient method are discussed. In the
final section, some numerical results are stated.

2. THE OPTIMAL BOUNDARY CONTROL PROBLEM
In this paper we propose the boundary control of viscous Burgers’ equation with an
external distributed force in the form

ut(x, t) + £[u(x, t)] = f(x, t) for (x, t) ∈ Ωx × ΩT , (1)

where

£[u(x, t)] = −νuxx(x, t) + u(x, t)ux(x, t). (2)

The variable u(x, t) is interpreted as the velocity of fluid at a spatial point x and at time
t, f(x, t) is the specific external force acting on the fluid and ν is the kinematic viscosity.
The problem is subject to the Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = υ(t), (3)
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and the initial condition

u(x, 0) = 0, (4)

where υ(t) is an arbitrary time-varying function. Let H(S) denotes the Hilbert space
introduced as:

H(S) = {f : IR ⊇ S → IR
∣∣ ‖f‖2H(S) <∞},

where the norm ‖f‖2H(S) = 〈f, f〉H(S) and

〈f, g〉H(S) =
∫

S

f(r)g(r) dr,

for all f, g ∈ H(S), in which S can be either ΩT = (0, T ) or Ωx = (0, 1). The Cartesian
product of two copies of H(S) is denoted by H2(S).

Definition 2.1. A time-varying function υ(t) is said to be admissible control, if for a
given T > 0, υ(t) ∈ H(ΩT ).

The problem of interest here is that of controlling the system above to produce a state
function u(x, T ) at the final time T that is as close as possible to a target function,
uT (x). We aim at achieving this goal through adjusting the boundary condition υ(t),
at x = 1. Our concern is to achieve the goal while minimizing the cost of the control
function υ(t). This suggests the problem:

min
υ∈H(ΩT )

J(υ)

where

J(υ) =
1
2

∫ 1

0

(u(x, T )− uT (x))2 dx+
ε

2

∫ T

0

υ(t)2 dt, (5)

and ε is a small positive constant and it reflects the relative weight attached to a cost
expenditure of control efforts.

3. MODAL EXPANSION TECHNIQUE
The idea of modal control is that one can control the motion of any point in the structure
by controlling the mode of its vibration. Although a distributed structure has an infinite
number of modes, in practice, only some of lower modes need to be controlled [2].
Using modal expansion method, the optimal control of distributed parameter systems
is reduced to the optimal control of lumped parameter dynamical systems in finite-
dimensional space in form of finite set of independent ordinary differential equations
[20]. Since this method is applicable to the distributed control problems, an appropriate
transformation is needed to convert the problem from one in which there are boundary
controls to one in which there are distributed controls, the following transformation is
considered [14]:

u(x, t) = xυ(t) + w(x, t), (6)
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where w(x, t) is an auxiliary state function. Then, the Burgers’ equation, Eq. (1)
becomes:

wt + νwxx + wwx + xυ(t)wx + υ(t)w + xυ2(t) = f(x, t), (7)

with homogeneous boundary conditions:

w(0, t) = 0, w(1, t) = 0, t ∈ ΩT , (8)

and initial condition as below:

w(x, 0) = −xυ(0), x ∈ Ωx. (9)

After this, we transform the distributed parameter control problem (7) – (9) into a modal
control lumped-parameter problem by means of eigenfunction expansion technique. Be-
fore applying the eigenfunction procedure to reduce the degrees of freedom of the system,
a set of eigenfunctions that satisfies the homogeneous boundary conditions in Eq. (8),
needs to be specified . The set of orthogonal eigenfunctions

{ψn(x)}∞n=1 =
{√

2 sin(nπx)
}∞

n=1
(10)

are the eigenfunctions of the operator £[w] = ∂2w
∂x2 and satisfy the boundary conditions.

Since the set of eigenfunctions {ψn}∞n=1 is a complete orthogonal basis for H(Ωx), each
w(x, t) ∈ H(Ωx) has a unique representation in the following form [18]:

w(x, t) =
∞∑

n=0

an(t)ψn(x). (11)

Although the state variable expansion theoretically yields an infinite-dimensional system,
it is necessary to limit the dimension since it is not feasible to control a large number
of modes actively. This is achieved by selecting the eigenfunctions associated with the
largest eigenvalues. Thus Eq. (11) can be written as a truncated Fourier series expansion:

wN (x, t) =
N∑

n=0

an(t)ψn(x), (12)

where

an(t) = 〈wN (x, t), ψn(x)〉H(Ωx), (13)

are Fourier coefficients of wN (x, t) and ψn(x) is defined by Eq. (10). Substituting
expansion (12) into Eq. (7), integrating over Ωx, and taking the inner product of both
sides of Eq. (7) results in a finite system of ordinary differential equations as follow:

ȧn(t) + (νn2 + υ(t))an(t) + In(t) = f̂(t), n = 1, 2, . . . , N, (14)

where the dot denotes the derivative with respect to time t in which

In(t) =
2n
π

N∑
k=1
k 6=n

k
υ(t)(−1)1+k+n

n2 − k2
an(t) +

√
2

nπ
(−1)n+1υ2(t), (15)



1254 A. MALEK, R. E. NATAJ AND M. J. YAZDANPANAH

and

f̂(t) = 〈f(x, t), ψn(x)〉H(Ωx).

The modal equations in Eq. (14) form a system of N first-order nonlinear coupled
differential equations subject to the modal initial conditions

an(0) =
√

2
nπ

(−1)nυ(0).

By using of the transformation (6) and the expansion (12), the objective functional (5)
in the first N modes becomes

JN (υ) =
1
2

∫ 1

0

(wN (x, T )− uT (x))2 dx+
ε

2

∫ T

0

υ(t)2 dt, (16)

and the optimal boundary control problem (5) is reduced to the following modal control
problem:

min
υ∈H(0,T )

JN (υ). (17)

4. CONTROL PARAMETRIZATION APPROACH
In general, this technique approximates the control functions by finite terms of orthogo-
nal functions with unknown coefficients, thereby converting an optimal control problem
into a mathematical programming problem. In this paper, the achieved modal control
problem is approximated by using finite terms of Fourier series where the unknown co-
efficients giving a solution near the optimal (or sub-optimal) solutions are sought. Let
the finite-dimensional subspace Um ⊂ H(0, T ) be the linear space spanned by Pi(t) for
i = 1, 2, . . . ,m that can be taken as standard families of polynomials or functions such
as orthogonal polynomials [4], trigonometric functions [9] or polynomial splines [21]:

Um = {υm(t) ∈ H(0, T ) | υm(t) =
m∑

i=0

αiPi(t), αi ∈ IR}.

Assume the set

U∞ = {υ(t) | υ(t) = lim
m→∞

υm(t)}. (18)

It is dense in H(0, T ), in the sense that for each admissible control υ(t) ∈ H(0, T ) and
δ > 0 there exists υ̃(t) ∈ U∞ such that

‖υ(t)− υ̃(t)‖H(0,T ) ≤ δ, (19)

After applying the approximation theory [6] there exists a unique L2–approximation
υm(t) ∈ Um to υ0(t) ∈ H(0, 1),

‖υ(t)− υ0(t)‖H(0,T ) = inf{‖υm(t)− υ0(t)‖H(0,T ) | υm(t) ∈ Um}. (20)
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In the control parametrization approach, the original problem of minimizing JN over
υ(t) ∈ H(0, T ) in Eq. (17) is replaced by the finite-dimensional problem of finding
υm(t) ∈ Um that minimizes JN over Um. In this paper, the components of parametriza-
tion of υm(t) is chosen to be of the form:

υm(t) =
2m∑
i=1

βiϕi(t)

= β1 sin(πt) + β2 cos(πt) + . . .+ β2m−1 sin(mπt) + β2m cos(mπt), (21)

where β = [β1, β2, . . . , β2m]> is to be determined optimally. Then our problem changes
to the following programming problem:

Find the optimal value for vector β̂ such that

JN (β̂) = inf
β∈IR2m

JN (β). (22)

The necessary condition of optimality is:

∂JN

∂β
= 0. (23)

Solution of the latter system leads to a nonlinear system of equations for β.

5. CONJUGATE GRADIENT METHOD

Among various minimization techniques for solving system of equations (23), Fletcher–
Reeves method, that is one of the conjugate gradient methods is used. The advantage of
conjugate gradient methods is that they have simple formulae for updating the direction
vector. These methods are slightly more complicated than steepest descent methods.
However they converge faster. It has been shown that any minimization method that
makes use of the conjugate directions like conjugate gradient methods is quadratically
convergent. This property of quadratic convergence is very useful because it ensures that
the method will minimize a quadratic function in which the number of required steps
equals to the number of minimization variables or less. Since any general function can be
approximated reasonably well by a quadratic near the optimum point, any quadratically
convergent method is expected to find the optimum point in a finite number of iterations
[10]. In this analysis, the search direction d at the first step is computed by

d(1) = − ∂JN

∂β(1)
= −

∫ 1

0

(u(x, T )− uT (x))
∂u(x, T )

∂β(1)
dx− ε

∫ T

0

υ(t)Φ(t) dt, (24)

where

∂u(x, T )
∂β

=

[
∂u(x, T )
∂β1

,
∂u(x, T )
∂β2

, . . . ,
∂u(x, T )
∂β2m

]>
,

and

Φ(t) = [ϕ1, ϕ2, . . . , ϕ2m]>.
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The sensitivity matrix
[

∂u

∂β

]
is calculated by partially differentiating Eqs. (1) – (4) with

respect to the parameter vector β:

∂

∂t
θ(k)− ν

∂2

∂x2
θ(k) + θ(k)

∂u

∂x
+ u

∂

∂x
θ(k) = 0 (k = 1, 2, . . . , 2m) (25)

θ(x = 0, t, k) = 0,
θ(x = 1, t, k) = ϕk(t),
θ(x, t = 0, k) = 0,

where

θ(k) = θ(x, t, k) ≡ ∂u

∂βk
. (26)

We solve this set of equations by the explicit finite difference method [17]. The parameter
vector β(i+1), where i denotes the iteration number, is calculated from β(i) through
moving in the conjugate direction d (i):

β (i+1) = β(i) + αd (i). (27)

The optimal step length α is determined by minimizing J(β + αd) with respect to α.
Since

u(β + αd) = u(β) +
2m∑
k=1

∂u

∂βk
αdk,

we have:

wN (β + αd) ∼= wN (β) +
2m∑
k=1

∂u

∂βk
αdk. (28)

Then

JN (β + αd) =
1
2

∫ 1

0

(wN (x, t) +
2m∑
k=1

αθ(k)dk − uT (x))2d dx

+
ε

2

∫ T

0

( 2m∑
k=1

(βk + αdk)ϕk(t)
)2

dt. (29)

Thus, the scalar α is computed by partially differentiating Eq. (29) with respect to α
and setting the resulting equation equal to zero,

α = −

∫ 1

0

(wN (x, t)− uT (x))
( 2m∑

k=1

θ(x, T, k)dk

)
dx+ ε

∫ T

0

( 2m∑
k=1

βkϕk(t)
)( 2m∑

k=1

dkϕk(t)
)

dt

∫ 1

0

( 2m∑
k=1

θ(x, T, k)dk

)2

dx+ ε

∫ T

0

( 2m∑
k=1

dkϕk(t)
)2

dt

.
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The conjugate direction or the search direction d is calculated and renewed by Fletcher–
Reeves method, which is expressed as follows:

d (i+1) = −∂JN

∂β

(i+1)

+ ρd (i), (30)

where

∂JN

∂β
=

[
∂JN

∂β1
,
∂JN

∂β2
, . . . ,

∂JN

∂β2m

]>
, (31)

with

∂JN

∂βk
= −

∫ 1

0

(u(x, T )− uT (x))θ(t = T, k) dx− ε

∫ T

0

υ(t)Φ(t) dt, (32)

and

ρ =

2m∑
k=1

(
∂JN

∂βk

(i+1))2

2m∑
k=1

(
∂JN

∂βk

(i))2
. (33)

This renewed d(i+1) is used for the search direction at the next iterative state i+ 1.

In the following, we propose ME-CG Algorithm, since the low-dimensional model is
determined by the Modal expansion approach and the minimization of the objective
function is computed by means of the conjugate gradient method suggested by Fletcher
and Reeves. The iterative algorithm for solving optimal boundary control problem of
the Burgers’ equation is summarized as:

ME-CG Algorithm

1. Provide N the number of eigenfunctions and m the number of components of
parametrization, choose the initial guess β (1) , Let υ(t) ≡ υm(t).

2. Assume i = 1. Determine υ(t) by Eq. (21) and β (1). With this control υ(t),
calculate an(t) by Eq. (14) employing the fourth order Runge–Kutta method
with fifth order error [8], then apply Eqs. (11) – (12) to calculate wN (x, t) and
transformation (6) for computing u(x, t = T ). Calculate θ(x, t = T, k) employing
the explicit finite difference method [17].

3. Compute d(1)
= − ∂JN

∂β
by Eq. (24).

4. Determine α that minimizes JN (β(i) + αd(i)) by Eq. (30).

5. Compute β(i+1) by Eq. (27).
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6. Calculate u(β(i+1)) and θ(β(i+1)).

7. Compute ρ by Eq. (33).

8. Compute d(i+1) by Eq. (30). If d(i+1) ≤ ε1, Check the stopping criterion: ‖JN −
JN−1‖ ≤ ε2, where ε1 and ε2 are prescribed small numbers, (In the first iteration set
JN−1 = ∞). If the stopping criterion is not satisfied set N = N+1 , β(1) = β(i+1)

and go to Step 2.

9. If d(i+1) > ε1, set i = i+ 1 and go to Step 4.

6. NUMERICAL RESULTS AND DISCUSSION

Here, we assess the accuracy and efficiency of the ME-CG algorithm proposed in the
previous section for solving the optimal boundary control problem for Burgers’ equation.
To ensure that the target function uT (x) is a reachable state, we determine it by inte-
grating Eqs. (1) – (4) with given υ(t) as a the boundary condition [19], using the finite
difference technique [17] and set uT (x) = u(x, T ). In the following examples the sine
waves are chosen as the boundary condition for the Burgers’ equation due to the nature
of problem, since some exact solutions of the Burgers’ equation evolve from an original
sine wave like Fay’s solution [5]. In the procedure proposed in the ME-CG algorithm,
we generate an optimal control function that reducing the cost expenditure of control
effort in the objective functional respect to the given known control function. Numerical
computations in the article are performed by a personal computer with a 2.4 GHz CPU
and 2 GB of RAM. To stabilize the numerical simulation the specific parameter values
adopted here are ν = 0.1 in Eq. (2), T = 1, ε = 0.001 in Eq. (5), N = 2 in Eq. (12) and
m = 2 in Eq. (21). Tolerances numbers in the algorithm are ε1 = 0.001 and ε2 = 0.0001.
We set the unknowns in Eq. (21) as a vector in form of β = [β1, β2, β3, β4]>. The
numerical procedure starts with the initial guess β = ~04×1.
We consider two different target functions determined by any of the following controls.
In the first case, it is considered:

Example 1.

υ(t) = sin(πt), 0 ≤ t ≤ 1. (34)

This control and corresponding target function uT (x) are depicted in Figs. 1 (a,b)
respectively. In Fig. 2 the target function is compared with the controlled one at final
time by using ME-CG algorithm. The convergence of method is also could be examined
with the following definition:

Definition 6.1. The optimal state function u(x, T ) approximate the given target func-
tion uT (x) with p correct significant digits if p is the smallest positive integer number
that satisfy in

n∑
i=1

|u(xi, T )− uT (xi)|
|u(xi, T )|

≤ 1
2
× 10−p+1

where n is the number of nodes using for discretization in a given spatial interval.
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In this example according to the attained numerical results the optimal state function
u(x, T ) approximate the target function uT (x) depicted in Fig. 1(b) with three correct
significant digits. The optimal control υ(t) calculated by the given ME-CG algorithm
and the original control in Eq. (34) are depicted in Fig. 3. These figures show that the
energy of the computed optimal control is less than the original control and this is what
was desired in the objective functional Eq. (5).
Second example is the case where the target profile uT (x) is determined by assuming
the following control function as the boundary condition for the Burgers’ equation.

Example 2.

υ(t) = sin(4πt), 0 ≤ t ≤ 1. (35)

This control and the target profile associated with it are depicted in Figs. 4(a,b). The
wavelength of sine wave is reduced compared to that of Example 1 to examine the ro-
bustness of the given algorithm in more challenging cases.
With the same assumptions, results are gathered in Figs. 5 and 6. According to Def-
inition 6.1, the optimal state function u(x, T ) approximate the target function uT (x)
depicted in Fig. 4(b) with two correct significant digits. In the Table 1, the difference
between these two functions values are given in some nodes on the spatial interval for
two Examples. The number of iterations needed in conjugate gradient method for get-
ting results with given ME-CG algorithm are depicted in Figs. 7 and 8, associated to
different cases respectively. It is shown that the value of the objective function decreases
rapidly. Finally, it takes 1667s for the ME-CG algorithm to yield the convergent pro-
file of the optimal control after N = 4 iterations for the target profile shown in Fig.
1(b), while 1218s and N = 3 iterations for the target profile determined in Fig. 4(b).
This reduction in the CPU time was expected since we use low-dimensional model and
conjugative gradient method, that provide quadratic convergence. In this case the per-
formance functional is more closely quadratic and so convergent is more nearly assured.

7. CONCLUSION

In this paper a class of the optimal control problems governed by Burgers’ equation is
considered. To develop a solution technique for such problems, the boundary control
problem is transformed into a distributed one. By applying the modal space approach,
the basic control problem is then reduced to a system of coupled nonlinear differential
equations. The parametrization method is applied to approximate the control by a finite
terms of Fourier series. The objective functional, which is determined by the distance
between the final state u(x, T ) and the target profile uT (x) along with the energy of the
control, is minimized by using the conjugate gradient method. Two examples are solved
using the proposed approach. Numerical results indicate that the proposed algorithm
is highly efficient and accurate. Applying this algorithm to similar problems with two
boundary controls could be the subject of the future works.
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Spatial nodes Example(1) Example(2)
x |u(x, T )− uT (x)| |u(x, T )− uT (x)|
0 0.0 ×10−4 0.0×10−4

0.1 0.336×10−3 0.3184×10−3

0.2 0.372×10−3 0.156×10−3

0.3 0.63×10−4 0.43×10−4

0.4 0.75×10−4 0.796×10−4

0.5 0.84×10−4 0.4378×10−3

0.6 0.378×10−3 0.398×10−3

0.7 0.462×10−3 0.452×10−3

0.8 0.42×10−3 0.1194×10−3

0.9 0.48×10−3 0.246×10−3

1 0.126×10−3 0.1194×10−3

Tab. 1. Difference between the calculated optimal state function

u(x, T )ME−CG and the target function uT (x) in some nodes on the

spatial interval [0, 1] for the Examples 1 and 2.
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Fig. 1. Example 1, (a) The control given by Eq. (34), (b) The

target profile uT (x) calculated by numerically solving Burgers’

equation using the boundary condition u(1, t) = sin(πt).
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Fig. 2. Example 1, Comparison between the target function uT (x)

and the final state u(x, T ) calculated by using the ME-CG algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

x

u(
x,

T
)

 

 
u(x,T)

ME−CG

u
T
(x)

Fig. 3. Example 1, The optimal control computed by the ME-CG

algorithm and the original control given by Eq. (34).
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Fig. 4. Example 2, (a) The control given by Eq. (35), (b) The

target profile uT (x) calculated by solving the Burgers’ equation using

the boundary condition u(1, t) = sin(4πt).
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Fig. 5. Example 2, Comparison between the final state

u(x, T )ME−CG and the target function.
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Fig. 6. Example 2, The profiles of the optimal control computed by

the ME-CG algorithm and the original control in Eq. (34).
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Fig. 7. Example 1, Convergent rate of the conjugate gradient

method. Here J4 is the value of the objective functional in the final

iteration N = 4, using the ME-CG algorithm.
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Fig. 8. Example 2, Convergent rate of the conjugate gradient

method. Here J3 is the value of the objective functional in the final

iteration N = 3, using the ME-CG algorithm.

ACKNOWLEDGEMENT

We would like to acknowledge and express our gratitude to all those reviewers who have made
the completion of this revised version of the paper possible.

(Received May 18, 2011)

R E FER E NCE S

[1] J. Baker, A. Armaou, and P. D. Christofides: Nonlinear control of incompressible fluid
flow: Application to Burgers’ equation and 2D channel flow. J. Math. Anal. Appl. 252
(2000), 230–255.

[2] M. J. Balas: Active control of flexible systems. J. Optim. Theory 259 (1978), 415–436.

[3] J.M. Burgers: A mathematical model illustrating the theory of turbulence. Adv. in Appl.
Mech. 1 (1948), 171.

[4] Y. Chang and T. Lee: Application of general orthogonal polynomials to the optimal control
of time-varying linear systems. Internat. J. Control 43 (1986), 4, 1283–1304.

[5] J.D. Cole: On quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl.
Math. 9 (1951), 225–236.

[6] R. F. Curtain and A. J. Pritchard: Functional Analysis in Modern Applied Mathematics.
Academic Press, New York 1977.



Efficient algorithm to solve optimal boundary control problem for Burgers’ equation 1265

[7] E. J. Dean and P. Gubernatis: Pointwise control of Burgers’ equation – a numerical
approach. Comput. Math. Appl. 22 (1991), 7, 93–100.

[8] J. R. Dormand and P. J. Prince: A family of embedded Runge–Kutta formulae. J. Comput.
Appl. Math. 6 (1980), 19–26.

[9] Y. Endow: Optimal control via Fourier series of operational matrix of integration. IEEE
Trans. Automat. Control 34 (1989), 7, 770–773.

[10] R. Fletcher and C. M. Reeves: Function minimization by conjugate gradients. Comput. J.
7 (1964), 144–160.

[11] S. Guerrero and O. Yu. Imanuvilov: Remarks on global controllability for the Burgers’
equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007),
897–906.

[12] H. Heidari, and A. Malek: Optimal boundary control for hyperdiffusion equation. Ky-
bernetica 46 (2010), 5, 907–925.

[13] B. B. King and D. A. Kruger: Burgers’ equation: Galerkin least squares approximation
and feedback control. Math, Comput. Modeling 38 (2003), 1078–1085.

[14] I. Kucuk and I. Sadek: A numerical approach to an optimal boundary control of the
viscous Burgers’ equation. Appl. Math. Comput. 210 (2009), 126–135.

[15] J. M. Lellouche, J. L. Devenon, and I. Dekeyser: Boundary control on Burgers’ equation.
A numerical approach. Comput. Math. Appl. 28 (1994), 33–44.

[16] Y. Leredde, J. M. Lellouche, J. L. Devenon, and I. Dekeyser: On initial, boundary condition
and viscosity coefficient control for Burgers’ equation. Internat. J. Numer. Meth. Fluids
28 (1998), 113–128.

[17] K.W. Morton and D. F. Mayers: Numerical Solution of Partial Differential Equations, An
Introduction. Cambridge University Press 2005.

[18] A. W. Naylor and G. R. Sell: Linear Operator Theory in Engineering and Sciences. Appl.
Math. Sci. 40, Springer-Verlag, New York 1982.

[19] H. M. Park, M.W. Lee, and Y. D. Jang: An efficient compuational method of boundary
optimal control problems for the Burgers’ equation. Comput. Methods Appl. Mech. Engrg.
166 (1998), 289–308.

[20] I. S. Sadek and J. Feng: Modelling techniques for optimal control of distributed parameter
systems. Math. Comput. Modelling 187 (1993), 41–58.

[21] H. R. Sirisena and F. S. Chou: State parameterization approach to the solution of optimal
control problems. Optimal Control Appl. Methods 2 (1981), 289–298.

Alaeddin Malek, Department of Applied Mathematics, Faculty of Mathematical Sciences, Tar-

biat Modares University, P.O.Box 14115-134, Tehran. Iran.

e-mail: mala@modares.ac.ir

Roghayeh Ebrahim Nataj, Department of Applied Mathematics, Faculty of Mathematical Sci-

ences, Tarbiat Modares University, P.O.Box 14115-134, Tehran. Iran.

e-mail: r.nattaj@gmail.com

Mohamad Javad Yazdanpanah, Control and Intelligent Processing Center of Excellence, Uni-

versity of Tehran, P.O.Box 14395-515, Tehran. Iran.

e-mail: yazdan@ut.ac.ir


	Introduction
	The optimal boundary control problem
	Modal expansion technique
	Control parametrization approach
	Conjugate gradient method
	Numerical results and discussion
	Conclusion

