Kybernetika 48 no. 5, 968-976, 2012

On copulas that generalize semilinear copulas

Juan Fernández Sánchez and Manuel Úbeda-Flores

Abstract:

We study a wide class of copulas which generalizes well-known families of copulas, such as the semilinear copulas. We also study corresponding results for the case of quasi-copulas.

Keywords:

copula, quasi-copula, 1-Lipschitz condition, tail dependence, 2-increasing property

Classification:

60E05, 62H20

References:

  1. C. Alsina, R. B. Nelsen and B Schweizer: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85-89.   CrossRef
  2. T. Calvo, A. Kolesárová, M. Komorníková and R. Mesiar: Aggregation operators: Properties, classes and construction methods. In: Aggregation Operators: New Trends and Applications (T. Calvo, G. Mayor, R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3-104.   CrossRef
  3. C. M. Cuadras and J. Augé: A continuous general multivariate distribution and its properties. Comm. Statist. A - Theory Methods 10 (1981), 339-353.   CrossRef
  4. E. de Amo, M. Díaz Carrillo and J. Fernández-Sánchez: Characterization of all copulas associated with non-continuous random variables. Fuzzy Sets and Systems 191 (2012), 103-112.   CrossRef
  5. B. De Baets, H. De Meyer and R. Mesiar: Assymetric semilinear copulas. Kybernetika 43 (2007), 221-233.   CrossRef
  6. F. Durante, J. Fernández Sánchez and M. Úbeda-Flores: Bivariate copulas generated by perturbations. To appear.   CrossRef
  7. F. Durante, J. A. Rodríguez-Lallena and M. Úbeda-Flores: New constructions of diagonal patchwork copulas. Inform. Sci. 179 (2009), 3383-3391.   CrossRef
  8. F. Durante, A. Kolesárová, R. Mesiar and C. Sempi: Semilinear copulas. Fuzzy Sets and Systems 159 (2008), 63-76.   CrossRef
  9. P. Embrechts, A. J. McNeil and D. Straumann: Correlation and dependence in risk management: Properties and pitfalls. In: Risk Management: Value at Risk and Beyond (M. A. H. Dempster, ed.), Cambrigde University Press, Cambridge 2002, pp. 176-223.   CrossRef
  10. G. Frahm, M. Junker and R. Schmidt: Estimating the tail dependence coefficient: Properties and pitfalls. Insurance: Math. Econom. 37 (2005), 80-100.   CrossRef
  11. M. Fréchet: Remarques au sujet de la note précédente. C. R. Acad. Sci. Paris Ser. I Math. 246 (1958), 2719-2720.   CrossRef
  12. G. A. Fredricks and R. B. Nelsen: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš, J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 129-136.   CrossRef
  13. C. Genest, J. J. Quesada-Molina, J. A. Rodríguez-Lallena and C. Sempi: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193-205.   CrossRef
  14. P. Jaworski, F. Durante, W. H$\ddot{\rm a}$rdle, T. Rychlik and eds.: Copula Theory and its Applications. Lecture Notes in Statistics - Proceedings. Springer, Berlin - Heidelberg 2010.   CrossRef
  15. H. Joe: Multivariate Models and Dependence Concepts. Chapman and Hall, London 1997.   CrossRef
  16. T. Jwaid, B. De Baets and H. De Meyer: Orbital semilinear copulas. Kybernetika 45 (2009), 1012-1029.   CrossRef
  17. R. B. Nelsen: An Introduction to Copulas. Second edition. Springer, New York 2006.   CrossRef
  18. R. B. Nelsen and G. A. Fredricks: Diagonal copulas. In: Distributions with Given Marginals and Moment Problems (V. Beneš, J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 121-128.   CrossRef
  19. A. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231.   CrossRef
  20. A. Sklar: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449-460.   CrossRef