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1. INTRODUCTION

We first recall the concept of a copula. For a detailed study of its properties and
applications, we refer to [14, 17].

Definition 1.1. A (bivariate) copula is a binary operation C : [0, 1]2 −→ [0, 1] which
satisfies: (C1) C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for every t ∈ [0, 1], and
(C2) C is 2-increasing, i. e., C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0 for every
u1, v1, v2, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2.

The importance of copulas in probability and statistics comes from Sklar’s theorem
[19, 20], which shows that the joint distribution of a pair of random variables and the
corresponding marginal distributions F and G are linked by these functions. If F and G
are continuous, then the copula is unique; otherwise, the copula is uniquely determined
on Range F×Range G (see [4] for the description of these copulas).

Given a copula C, we define a set function µC as a finitely additive set function on a
rectangle, i. e., if R = [u1, u2] × [v1, v2] ∈ [0, 1]2, then µC(R) = C(u2, v2) − C(u1, v2) −
C(u2, v1) + C(u1, v1). In the following, when we refer to “mass” on a set, we mean the
value of µC for that set. We also note that µC can be also extended to a measure in the
σ-algebra of the Borel sets.

Let Π denote the copula of independent random variables, i. e., Π(u, v) = uv for every
(u, v) ∈ [0, 1]2. We let M and W denote the respective Fréchet–Hoeffding upper and
lower bound copulas, which, for any copula C, satisfy: max(u + v − 1, 0) = W (u, v) ≤
C(u, v) ≤ M(u, v) = min(u, v) for every (u, v) ∈ [0, 1]2.

The diagonal section δC of a copula C is the function given by δC(t) = C(t, t) for
every t ∈ [0, 1]. We note that this definition can be also extended to other functions.
On the other hand, a diagonal is a function δ : [0, 1] → IR which satisfies (i) δ(1) = 1,
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(ii) δ(t) ≤ t for every t ∈ [0, 1], and (iii) 0 ≤ δ(t′)− δ(t) ≤ 2(t′ − t) for every t, t′ ∈ [0, 1]
such that t ≤ t′. The diagonal section of any copula is a diagonal; and for any diagonal
δ, there exist copulas whose diagonal section is δ [12, 18]. δC can be used to study the
tail dependence of a random pair (X, Y ) with associated copula C [15].

In this paper, we define and characterize a wide class of copulas which generalizes
well-known families of copulas, such as the semilinear copulas [5, 8] and study the tail
dependence property. We also characterize the members of the family to be quasi-
copulas.

2. A WIDE CLASS OF COPULAS

2.1. Characterization and properties

Let D,E, F and G be functions defined on [0, 1] and C the function defined on [0, 1]2 by

C(x, y) = D(x ∨ y)E(x ∧ y) + F (x ∧ y)G(x ∨ y), (1)

where (x ∨ y) = max(x, y) and (x ∧ y) = min(x, y).

Our first step is to express the function given by (1), assuming it is a copula, in a
more tractable manner.

Lemma 2.1. If C is a copula of type (1), then it can be written in the following way:

C(x, y) = A(x ∨ y)Z(x ∧ y) + (x ∧ y)B(x ∨ y), (2)

where A,B and Z are three absolutely continuous functions defined on [0, 1] such that
A(1) = Z(0) = 0 and B(1) = 1.

P r o o f . First assume that D(1) = 0. Then, for x ≤ y, x = C(x, 1) = F (x)G(1) for
every x ∈ [0, 1], and hence we have G(1) 6= 0 and F (x) = x

G(1) , which implies that

C(x, y) = D(x ∨ y)E(x ∧ y) + (x ∧ y)
G(y ∨ x)

G(1)
.

Taking A(x) = D(x), Z(x) = E(x) and B(x) = G(x)
G(1) , we obtain (2). Now, if D(1) 6= 0,

we have x = C(x, 1) = D(1)E(x) + F (x)G(1), i. e., E(x) = x−F (x)G(1)
D(1) , which implies

that

C(x, y) = F (x ∧ y)
(

G(x ∨ y)− D(x ∨ y)G(1)
D(1)

)
+ (x ∧ y)

D(x ∨ y)
D(1)

. (3)

Taking Z(x) = F (x), B(x) = D(x)
D(1) and A(x) = G(x)−B(x)G(1) in (3), we obtain (2).

Since A(y)Z(x) + xB(y) is absolutely continuous when x ≤ y, then Z is absolutely
continuous when x ≤ y, and tending y to 1, then Z is absolutely continuous in [0, 1].
If Z is not a linear function, we can express A and B as a linear combination of two
absolutely continuous functions, therefore, both A and B are absolutely continuous. If
Z is linear of the form Z(x) = ax for a constant a, then

C(x, y) = (aA(x ∨ y) + B(x ∨ y)− 1)(x ∧ y) + (x ∧ y)
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and, in this case, we take A∗(x) = aA(x) + B(x) − 1, B∗(x) = 1, Z∗(x) = x, and thus
A∗, B∗ and Z∗ are absolutely continuous. �

The following result characterizes the function given by (1) to be a copula.

Theorem 2.2. The function C given in (1) is a copula if and only if it holds:

(i) C can be expressed in the form (2), with A(1) = Z(0) = 0 and B(1) = 1,

(ii) A′(y)Z ′(x) + B′(y) ≥ 0 for x ≤ y in a set of measure 1/2,

(iii) A′(x)Z(x)−A(x)Z ′(x)−B(x) + xB′(x) ≤ 0 in a set of measure 1.

P r o o f . First assume (1) is a copula. Then, Lemma 2.1, and the fact that 0 = C(0, y) =
A(y)Z(0) for every y ∈ [0, 1], give us item (i). Let x1, x2, y1, y2 be points in [0, 1] such
that x1 < min(x2, y1) < y2. Since C is 2-increasing, we have [A(y2) − A(y1)][Z(x2) −
Z(x1)] + (x2 − x1)[B(y2)−B(y1)] ≥ 0, or equivalently,

[A(y2)−A(y1)][Z(x2)− Z(x1)]
(y2 − y1)(x2 − x1)

+
B(y2)−B(y1)

y2 − y1
≥ 0. (4)

If we tend x2 → x1 and y2 → y1, we obtain (ii). Since A,B and Z are derivable in a set
of measure 1, we have

∂2

∂x∂y
C(x, y) = A′(x ∨ y)Z ′(x ∧ y) + B′(x ∨ y)

except in a set of measure 0. Assuming b > a, since the sum of the masses of the
rectangles R1 = [b, 1]× [a, b] and R2 = [0, a]× [a, b] must be less or equal to b− a, then
we have

µC(R1) + µC(R2) = b− a−A(b)Z(b)− bB(b) + 2A(b)Z(a)
+2aB(b)−A(a)Z(a)− aB(a)

≤ b− a,

i. e.,

−A(b)Z(b)− bB(b) + 2A(b)Z(a) + 2aB(b)−A(a)Z(a)− aB(a) ≤ 0,

or equivalently,

Z(a)[A(b)−A(a)]−A(b)[Z(b)− Z(a)]− (b− a)B(b) + a[B(b)−B(a)] ≤ 0.

Dividing this last expression by b− a and tending a → b, we obtain that the derivative
A′(x)Z(x)−A(x)Z ′(x)−B(x) + xB′(x) (if it exists) must be less or equal to zero. But
in a set of measure 1 the existence is guaranteed, since the functions are absolutely
continuous, whence (iii) follows.

Conversely, the boundary conditions are immediately satisfied. To check the 2-
increasing property, we first consider two cases:
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(I) If the rectangle R = [x1, x2]× [y1, y2] has no intersection with the main diagonal,
since item (ii) is satisfied, we obtain (4) by using the same idea as above backwards,
and thus µC(R) = [A(y2)−A(y1)][Z(x2)−Z(x1)] + (x2− x1)[B(y2)−B(y1)] ≥ 0.

(II) If two vertices of a rectangle R are on the main diagonal, i. e., R = [a, b]2, then we
have

µC(R) = bB(b) + aB(a)− 2aB(b) + A(b)Z(b) + A(a)Z(a)− 2A(b)Z(a)

=
∫ b

a

[B(b)− aB′(x) + Z ′(x)A(b)−A′(x)Z(a)] dx

=
∫ b

a

[B(x)− xB′(x) + Z ′(x)A(x)−A′(x)Z(x)] dx

+
∫ b

a

∫ x

a

[B′(x) + A′(x)Z ′(y)] dydx +
∫ b

a

∫ b

x

[B′(y) + A′(y)Z ′(x)] dydx.

Thus, by hypothesis, we obtain µC(R) ≥ 0.

Finally, note that any rectangle can be expressed as the finite union of rectangles of
the forms given in cases (I) and (II); hence C is 2-increasing, and this completes the
proof. �

Any copula C can be written as the sum of an absolutely continuous component AC

and a singular component SC . When C = AC (respectively, C = SC), then it is said that
C is absolutely continuous (respectively, singular). The following result characterizes the
function C given by (2) to be absolutely continuous or have a singular component.

Theorem 2.3. The function C given by (2) is an absolutely continuous copula if and
only if

A′(x)Z(x)−A(x)Z ′(x) + xB′(x)−B(x) = 0 (5)

for x ∈ [0, 1]. Moreover, if C has a singular component, then it must be concentrated
on the main diagonal, and has density function

−A′(x)Z(x) + A(x)Z ′(x)− xB′(x) + B(x).

P r o o f . Consider a rectangle R = [x1, x2]× [y1, y2] ∈ [0, 1]2 such that, without loss of
generality, x1 < min(x2, y1) < y2. Then, we have∫ y2

y1

∫ x2

x1

∂2

∂x∂y
C(x, y) dxdy =

∫ y2

y1

∫ x2

x1

[A′(y)Z ′(x) + B′(y)] dxdy

= [A(y2)−A(y1)][Z(x2)− Z(x1)]
+(x2 − x1)[(B(y2)−B(y1)]

= µC(R).

Thus, if the singular component exists, then it must be concentrated on the main diag-
onal. Therefore, C is absolutely continuous if and only if∫ a

0

∫ a

0

∂2

∂x∂y
C(x, y) dxdy = C(a, a).
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Since∫ a

0

∫ a

0

∂2

∂x∂y
C(x, y) dxdy =

∫ a

0

∫ x

0

[A′(x)Z ′(y) + B′(x)] dydx

+
∫ a

0

∫ a

x

[A′(y)Z ′(x) + B′(y)] dydx

=
∫ a

0

[A′(x)Z(x)−A(x)Z ′(x) + xB′(x)−B(x)] dx

+A(a)Z(a) + aB(a)

and C(a, a) = A(a)Z(a) + aB(a), we have∫ a

0

[A′(x)Z(x)−A(x)Z ′(x) + xB′(x)−B(x)] dx = 0.

Since A,B and Z are absolutely continuous, we obtain (5). If C has a singular component
(on the main diagonal), then

SC(x, x) = C(x, x)−
∫ x

0

∫ x

0

∂2

∂u∂v
C(u, v) dudv,

whence the result easily follows. �

2.2. Tail dependence

If (X, Y ) is a pair of continuous random variables with associated copula copula C, and
xt, yt ∈ IR are respective 100t-th percentiles for every t ∈ (0, 1), then δC(t) = IP[X ≤
xt, Y ≤ yt] for every t ∈ (0, 1). The upper and lower tail dependence parameters λU and
λL, which are defined as λU = limt→1− IP[Y > yt|X > xt] and λL = limt→0+ IP[Y ≤
yt|X ≤ xt] (if the limits exist) can be computed as follows: λU (C) = 2 − δ′C(1−) and
λL(C) = δ′C(0+) [15, 17]. Since copulas are used to build models for dependence between
risks in financial and actuarial risk management, specially dependence between extreme
events, tail dependence has been shown to be useful to describe this dependence (see,
for instance, [9, 10]).

Now we compute the upper and lower tail coefficients for any copula C defined by
(2) — the proof is immediate, and we omit it.

Theorem 2.4. Let C be a copula given by (2). Then we have λU (C) = 1−A′(1−)Z(1)−
B′(1−) and λL(C) = A(0)Z ′(0+) + B(0), as long as the derivatives exist.

2.3. Examples

We provide several examples of copulas given by (1) (some of them are generalizations
of well-known families of copulas). The first example shows the reason for the title of
this work.
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Example 2.5. Suppose Z(x) = x, B(x) = 1, and H(x) = A(x) + 1 for all x ∈ [0, 1].
Then, the function C in (2) is given by

C(x, y) = H(x ∨ y)(x ∧ y).

Thus, C is copula if and only if H(x) is nondecreasing and H(x)
x is nonincreasing for

x ∈ [0, 1]. These copulas (called lower semilinear) are defined and characterized in [5, 8],
where the function H is given by H(x) = δC(x)

x . Note also that λU (C) = 1 − H ′(1−)
and λL(C) = H(0).

As a particular case, if we consider the function H(x) = x1−α, with α ∈ [0, 1], in (2),
then we obtain the well-known Cuadras–Augé family of copulas [3], which is given by

C(x, y) = (x ∨ y)1−α(x ∧ y). (6)

Example 2.6. Assume B(x) = x for all x ∈ [0, 1]. Then the function C in (1) is given
by

C(x, y) = A(x ∨ y)Z(x ∧ y) + xy,

with A and Z absolutely continuous functions. Thus, C is a copula if and only if the
following conditions hold: (i) A(1) = Z(0) = 0, (ii) A′(y)Z ′(x) ≥ −1 such that x ≤ y in
a set of measure 1/2, and (iii) A′(x)Z(x)−A(x)Z ′(x) ≤ 0 in a set of measure 1. These
copulas have been studied in [7].

As a particular case, if we consider the functions A(x) = 1 − x and Z(x) = βx for
x ∈ [0, 1], with β ∈ [0, 1], in (2), we obtain a member of the well-known Fréchet family
of copulas [11, 17]

C(x, y) = β(x ∧ y) + (1− β)xy,

i. e., C(x, y) = βM(x, y) + (1− β)Π(x, y).

Example 2.7. Consider the functions A(x) = x(1−x), Z(x) = x2 and B(x) = x2 for all
x ∈ [0, 1]. It is easy to check that these functions fulfill the hypotheses in Theorem 2.2.
Thus, the function given by

C(x, y) = (x ∨ y)[1− (x ∨ y)](x ∧ y)2 + (x ∧ y)(x ∨ y)2

is a copula. Moreover, the equality (5) is satisfied, whence C is absolutely continuous.

Example 2.8. Consider the functions A(x) = 1 − x, Z(x) = x2 and B(x) = x2 for all
x ∈ [0, 1]. It is easy to check that these functions fulfill the hypotheses in Theorem 2.2.
Thus, the function given by

C(x, y) = [1− (x ∨ y)](x ∧ y)2 + (x ∧ y)(x ∨ y)2

is a copula. Moreover, the equality (5) is not satisfied, whence C has a singular compo-
nent along the main diagonal and such that the segment that joins the point (0, 0) to
(x, x) has a mass equals to x2

(
1− 2x

3

)
.
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2.4. Quasi-copulas

The notion of (bivariate) quasi-copula was introduced in [1] in order to show that a
certain class of operations on univariate distribution functions is not derivable from
corresponding operations on random variables defined on the same probability space.
A quasi-copula is a function Q : [0, 1]2 → [0, 1] that satisfies (C1) in Definition 1.1,
but instead of (C2), the weaker conditions [13]: (Q1) Q is increasing in each variable;
and (Q2) Q is 1-Lipschitz, i.e, for all u1, v1, u2, v2 ∈ [0, 1] it holds that |Q(u1, v1) −
Q(u2, v2)| ≤ |u1 − u2|+ |v1 − v2|.

While every copula is a quasi-copula, there exist proper quasi-copulas, i. e. quasi-
copulas that are not copulas. However, quasi-copulas are also bounded by the copulas
W and M .

Nowadays, quasi-copulas are used in aggregation processes because they ensure that
the aggregation is stable, in the sense that small error inputs correspond to small error
outputs. For an overview, we refer to [2].

The following result provides under which conditions the function C defined by (2)
is a quasi-copula.

Theorem 2.9. Let C be the function given by (2). Then, C is a quasi-copula if and
only if it satisfies the following conditions:

(i) A,B and Z are absolutely continuous,

(ii) A(1) = Z(0) = 0 and B(1) = 1,

(iii) 0 ≤ A′(x)Z(y) + yB′(x) ≤ 1 for y ≤ x in a set of measure 1/2,

(iv) 0 ≤ A(x)Z ′(y) + B(x) ≤ 1 for y ≤ x in a set of measure 1/2.

P r o o f . First suppose C is a quasi-copula. Conditions (i) and (ii) are obtained in a
similar manner to those in Theorem 2.2. Since C is nondecreasing and 1-Lipschitz (with
respect to x), this implies that

0 ≤ [A(x2)−A(x1)]Z(y) + y[B(x2)−B(x1)] ≤ x2 − x1 (7)

when y ≤ x1 < x2. We divide (7) by x2 − x1. From the fact that A,B and Z are
absolutely continuous, and tending x2 to x1, we have condition (iii). We also obtain
condition (iv) in a similar way (with respect to y).

Conversely, the boundary conditions (C1) are satisfied via condition (ii). On the
other hand, since∫ x2

x1

[A′(t)Z(y) + yB′(t)] dt = [A(x2)−A(x1)]Z(y) + y[B(x2)−B(x1)],

the inequalities in (iii) imply that C is increasing and 1-Lipschitz with respect to x.
Similarly, by using condition (iv), we obtain that C is increasing and 1-Lipschitz with
respect to y, and hence C is a quasi-copula. �
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Example 2.10. Consider the function A given by

A(x) =


x, if 0 ≤ x ≤ 1/3
1− 2x, if 1/3 < x ≤ 2/3
x− 1, otherwise,

Z(x) = −A(x) and B(x) = x for every x ∈ [0, 1]. It is easy to check that the functions
A,Z and B satisfy the hypotheses in Theorem 2.9, and the function C, defined in (2)
and given by C(x, y) = xy − A(x)A(y) (note that C is symmetric), is a proper quasi-
copula [6].

3. CONCLUSION AND FURTHER WORK

In this paper we have constructed a wide class of copulas generalizing well-known families
such as the semilinear copulas. In [16], the authors introduce new types of semilinear
copulas based on diagonal and opposite diagonal functions. The generalization of the
so-called orbital semilinear copulas (in a similar manner to that done in this work) is
subject of further research.
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[8] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi: Semilinear copulas. Fuzzy Sets
and Systems 159 (2008), 63–76.

[9] P. Embrechts, A. J. McNeil, and D. Straumann: Correlation and dependence in risk
management: Properties and pitfalls. In: Risk Management: Value at Risk and Beyond
(M.A. H. Dempster, ed.), Cambrigde University Press, Cambridge 2002, pp. 176–223.

[10] G. Frahm, M. Junker, and R. Schmidt: Estimating the tail dependence coefficient:
Properties and pitfalls. Insurance: Math. Econom. 37 (2005), 80–100.
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