Kybernetika 48 no. 2, 299-308, 2012

Max-min interval systems of linear equations with bounded solution

Helena Myšková

Abstract:

Max-min algebra is an algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\kr$, where $a\oplus b=\max\{a,b\}, a\kr b=\min\{a,b\}$. The notation $\mbf{A}\kr \mbf{x}=\mbf{b}$ represents an interval system of linear equations, where $\mbf{A}=[\pA,\nA]$, $\mbf{b}=[\pb,\nb]$ are given interval matrix and interval vector, respectively, and a solution is from a given interval vector $\mbf{x}=[\px,\nx]$. We define six types of solvability of max-min interval systems with bounded solution and give necessary and sufficient conditions for them.

Keywords:

max-min algebra, interval system, T6-vector, weak T6 solvability, strong T6 solvability, T7-vector, weak T7 solvability, strong T7 solvability

Classification:

15A06, 65G30

References:

  1. A. Asse, P. Mangin and D. Witlaeys: Assisted diagnosis using fuzzy information. In: NAFIPS 2 Congress, Schenectudy 1983.   CrossRef
  2. K. Cechlárová: Solutions of interval systems in max-plus algebra. In: Proc. SOR 2001 (V. Rupnik, L. Zadnik-Stirn, S. Drobne, eds.), Preddvor 2001, pp. 321-326.   CrossRef
  3. K. Cechlárová and R. A. Cuninghame-Green: Interval systems of max-separable linear equations. Linear Algebra Appl. 340 (2002), 215-224.   CrossRef
  4. M. Gavalec and J. Plavka: Monotone interval eigenproblem in max-min algebra. Kybernetika 46 (2010), 3, 387-396.   CrossRef
  5. L. Hardouin, B. Cottenceau, M. Lhommeau and E. L. Corronc: Interval systems over idempotent semiring. Linear Algebra Appl. 431 (2009), 855-862.   CrossRef
  6. H. Myšková: Interval systems of max-separable linear equations. Linear Alebra. Appl. 403 (2005), 263-272.   CrossRef
  7. H. Myšková: Control solvability of interval systems of max-separable linear equations. Linear Algebra Appl. 416 (2006), 215-223.   CrossRef
  8. H. Myšková: An algorithm for testing T4 solvability of interval systems of linear equations in max-plus algebra. In: P. 28th Internat. Scientific Conference on Mathematical Methods in Economics, České Budějovice 2010, pp. 463-468.   CrossRef
  9. H. Myšková: The algorithm for testing solvability of max-plus interval systems. In: Proc. 28th Internat. Conference on Mathematical Methods in Economics, Jánska dolina 2011, accepted.   CrossRef
  10. H. Myšková: Interval solutions in max-plus algebra. In: Proc. 10th Internat. Conference APLIMAT, Bratislava 2011, pp. 143-150.   CrossRef
  11. A. Di Nola, S. Salvatore, W. Pedrycz and E. Sanchez: Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Dordrecht 1989.   CrossRef
  12. J. Rohn: Systems of interval linear equations and inequalities (rectangular case). Technical Report No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic 2002.   CrossRef
  13. E. Sanchez: Medical diagnosis and composite relations. In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, and R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444.   CrossRef
  14. T. Terano and Y. Tsukamoto: Failure diagnosis by using fuzzy logic. In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395.   CrossRef
  15. L. A. Zadeh: Toward a theory of fuzzy systems. In: Aspects of Network and Systems Theory (R. E. Kalman and N. De Claris, eds.), Hold, Rinehart and Winston, New York 1971, pp. 209-245.   CrossRef