Kybernetika 48 no. 2, 190-205, 2012

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue and Ronghui Lu


A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are showed by using numerical and experimental simulations.


fractional chaotic systems, fractional differential controller, GS, state observer, Gershgorin circle theorem, pole assignment algorithm, SC, chaotic masking


65P20, 94A05, 11T71


  1. M. A. Aon, S. Cortassa and D. Lloyd: Chaotic dynamics and fractal space in biochemistry: Simplicity underlies complexity. Cell Biology Internat. 24 (2000), 581-587.   CrossRef
  2. K. B. Arman, K. Fallahi, N. Pariz and H. Leung: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 863-879.   CrossRef
  3. S. Banerjee, D. Ghosh and A. C. Roy: Multiplexing synchronization and its applications in cryptography. Physica Scripta 78 (2008), 015010.   CrossRef
  4. A. Charef, H. H. Sun, Y. Y. Tsao and B. Onaral: Fractal system as represented by singularity function. IEEE Trans. Automat. Control 37 (1992),1465-1470.   CrossRef
  5. M. J. Chen, D. P. Li and A. J. Zhang: Chaotic synchronization based on nonlinear state-observer and its application in secure communication. J. Marine Sci. Appl. 3 (2004), 64-70.   CrossRef
  6. G. Chen and X. Yu: Chaos Control: Theory and Applications. Springer, Berlin 2003.   CrossRef
  7. K. Diethelm, N. J. Ford and A. D. Freed: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29 (2002), 3-22.   CrossRef
  8. K. Diethelm, N. J. Ford and A. D. Freed: Detailed error analysis for a fractional Adams method. Numerical Algorithms 36 (2004), 31-52.   CrossRef
  9. D. Ghosh: Nonlinear active observer-based generalized synchronization in time-delayed systems. Nonlinear Dynamics 59 (2010), 179-190.   CrossRef
  10. R. M. Guerra and W. Yu: Chaotic synchronization and secure communication via sliding-mode observer. Internat. J. Bifurcation Chaos 18 (2008), 235-243.   CrossRef
  11. J. B. Hu, Y. Han and L. D. Zhao: Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica 57 (2008), 7522-7526.   CrossRef
  12. J. B. Hu, Y. Han and L. D. Zhao: Adaptive control the fractional unified chaotic system based on the estimated eigenvalue theory. J. Physics: Conference Series 96 (2008), 012151.   CrossRef
  13. A. A. Koronovskii, O. I. Moskalenko and A. E. Hramov: On the use of chaotic synchronization for secure communication. Physics-Uspekhi 52 (2009), 1213-1238.   CrossRef
  14. J. H. Lü and G. R. Chen: Generating multi-scroll chaotic attractors: Theories, methods and applications. Internat. J. Bifurcation Chaos 16 (2006), 775-858.   CrossRef
  15. J. H. Lü, G. R. Chen, X. H. Yu and H. Leung: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Systems - I: Regular Papers 51 (2003), 2476-2490.   CrossRef
  16. J. H. Lü, G. R. Chen and S. C. Zhang: The compound structure of a new chaotic attractor. Chaos, Solitons Fractals 14 (2002), 669-672.   CrossRef
  17. J. H. Lü, F. L. Han, X. H. Yu and G. R. Chen: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687.   CrossRef
  18. J. H. Lü, S. M. Yu, H. Leung and G. R. Chen: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems - I: Regular Papers 53 (2006), 149-165.   CrossRef
  19. G. Maione and P. Lino: New tuning rules for fractional $PI^\alpha$ controllers. Nonlinear Dynamics 49 (2007), 251-257.   CrossRef
  20. D. Matignon: Stability result on fractional differential equations with applications to control processing. In: Proc. IMACS-SMC (IMACS-SMC), Lille 1996, pp. 963-968.   CrossRef
  21. T. Menacer and N. Hamri: Synchronization of different chaotic fractional-order systems via approached auxiliary system the modified Chua oscillator and the modified Van der Pol-Duffing oscillator. Electr. J. Theoret. Phys. 8 (2011), 253-266.   CrossRef
  22. K. S. Miller and B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York 1993.   CrossRef
  23. C. A. Monje and V. Feliu: The fractional-order lead compensator. In: IEEE International Conference on Computational Cybernetics (ICCC), Vienna 2004, pp. 347-352.   CrossRef
  24. C. A. Monje, B. M. Vinagre, V. Feliu and Y. Q. Chen: Tuning and auto-tuning of fractional order controllers for industry applications. Control Engrg. Practice 16 (2008),798-812.   CrossRef
  25. G. J. Penga and Y. L. Jiang: Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Phys. Lett. A 372 (2008), 3963-3970.   CrossRef
  26. G. J. Penga, Y. L. Jiang and F. Chen: Generalized synchronization of fractional order chaotic systems. Physica A 387 (2008), 3738-3746.   CrossRef
  27. M. A. Savi: Chaos and order in biomedical rhythms. J. Brazil. Soc. Mechan. Sci. Engrg. 27 (2005), 157-169.   CrossRef
  28. D. V. Senthilkumar, M. Lakshmanan and J. Kurths: Phase synchronization in time-delay systems. Phys. Rev. E 74 (2006), 035205.   CrossRef
  29. K. S. Tang, G. Q. Zhong, G. Chen and K. F. Man: Generation of N-scroll attractors via Sine function. IEEE Trans. Circuits and Systems - I: Fundamental Theory Appl. 48 (2001), 1369-1372.   CrossRef
  30. M. S. Tavazoei, M. Haeri, S. Bolouki and M. Siami: Using fractional-order integrator to control chaos in single-input chaotic systems. Nonlinear Dynamics 55 (2009), 179-190.   CrossRef
  31. L. A. B. Torres and L. A. Aguirre: Transmitting information by controlling nonlinear oscillators. Physica D 196 (2004), 387-406.   CrossRef
  32. R. S. Varga: Matrix Iterative Analysis. Springer, Berlin 2000.   CrossRef
  33. H. U. Voss: Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett. 87 (2001), 014102.   CrossRef
  34. Z. Wang, Y. T. Wu, Y. X. Li and Y. J. Zou: Adaptive backstepping control of a nonlinear electromechanical system with unknown parameters. In: Proc. 4th International Conference on Computer Science and Education (ICCSE), Nanning 2009, pp. 441-444.   CrossRef
  35. Z. Wang, Y. T. Wu and Y. J. Zou: Analysis and sliding control of multi-scroll jerk circuit chaotic system. J. Xi'an University of Science and Technology 29 (2009), 765-768.   CrossRef
  36. T. Yang and L. O. Chua: Generalized synchronization of chaos via linear transforms. Internat. J. Bifurcation Chaos 9 (1999), 215-219.   CrossRef
  37. R. Zhang, Z. Y. Xu, S. X. Yang and X. M. He: Generalized synchronization via impulsive contro. Chaos, Solitons Fractals 38 (2008), 97-105.   CrossRef
  38. P. Zhou, X. F. Cheng and N. Y. Zhang: Generalized synchronization between different fractional-order chaotic systems. Commun. Theoret. Phys. 50 (2008), 931-934.   CrossRef