Kybernetika 48 no. 2, 190-205, 2012

Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication

Hongtao Liang, Zhen Wang, Zongmin Yue and Ronghui Lu

Abstract:

A fractional differential controller for incommensurate fractional unified chaotic system is described and proved by using the Gershgorin circle theorem in this paper. Also, based on the idea of a nonlinear observer, a new method for generalized synchronization (GS) of this system is proposed. Furthermore, the GS technique is applied in secure communication (SC), and a chaotic masking system is designed. Finally, the proposed fractional differential controller, GS and chaotic masking scheme are showed by using numerical and experimental simulations.

Keywords:

fractional chaotic systems, fractional differential controller, GS, state observer, Gershgorin circle theorem, pole assignment algorithm, SC, chaotic masking

Classification:

65P20, 94A05, 11T71

References:

  1. M. A. Aon, S. Cortassa and D. Lloyd: Chaotic dynamics and fractal space in biochemistry: Simplicity underlies complexity. Cell Biology Internat. 24 (2000), 581-587.   CrossRef
  2. K. B. Arman, K. Fallahi, N. Pariz and H. Leung: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Comm. Nonlinear Sci. Numer. Simul. 14 (2009), 863-879.   CrossRef
  3. S. Banerjee, D. Ghosh and A. C. Roy: Multiplexing synchronization and its applications in cryptography. Physica Scripta 78 (2008), 015010.   CrossRef
  4. A. Charef, H. H. Sun, Y. Y. Tsao and B. Onaral: Fractal system as represented by singularity function. IEEE Trans. Automat. Control 37 (1992),1465-1470.   CrossRef
  5. M. J. Chen, D. P. Li and A. J. Zhang: Chaotic synchronization based on nonlinear state-observer and its application in secure communication. J. Marine Sci. Appl. 3 (2004), 64-70.   CrossRef
  6. G. Chen and X. Yu: Chaos Control: Theory and Applications. Springer, Berlin 2003.   CrossRef
  7. K. Diethelm, N. J. Ford and A. D. Freed: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29 (2002), 3-22.   CrossRef
  8. K. Diethelm, N. J. Ford and A. D. Freed: Detailed error analysis for a fractional Adams method. Numerical Algorithms 36 (2004), 31-52.   CrossRef
  9. D. Ghosh: Nonlinear active observer-based generalized synchronization in time-delayed systems. Nonlinear Dynamics 59 (2010), 179-190.   CrossRef
  10. R. M. Guerra and W. Yu: Chaotic synchronization and secure communication via sliding-mode observer. Internat. J. Bifurcation Chaos 18 (2008), 235-243.   CrossRef
  11. J. B. Hu, Y. Han and L. D. Zhao: Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica 57 (2008), 7522-7526.   CrossRef
  12. J. B. Hu, Y. Han and L. D. Zhao: Adaptive control the fractional unified chaotic system based on the estimated eigenvalue theory. J. Physics: Conference Series 96 (2008), 012151.   CrossRef
  13. A. A. Koronovskii, O. I. Moskalenko and A. E. Hramov: On the use of chaotic synchronization for secure communication. Physics-Uspekhi 52 (2009), 1213-1238.   CrossRef
  14. J. H. Lü and G. R. Chen: Generating multi-scroll chaotic attractors: Theories, methods and applications. Internat. J. Bifurcation Chaos 16 (2006), 775-858.   CrossRef
  15. J. H. Lü, G. R. Chen, X. H. Yu and H. Leung: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Trans. Circuits Systems - I: Regular Papers 51 (2003), 2476-2490.   CrossRef
  16. J. H. Lü, G. R. Chen and S. C. Zhang: The compound structure of a new chaotic attractor. Chaos, Solitons Fractals 14 (2002), 669-672.   CrossRef
  17. J. H. Lü, F. L. Han, X. H. Yu and G. R. Chen: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687.   CrossRef
  18. J. H. Lü, S. M. Yu, H. Leung and G. R. Chen: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Systems - I: Regular Papers 53 (2006), 149-165.   CrossRef
  19. G. Maione and P. Lino: New tuning rules for fractional $PI^\alpha$ controllers. Nonlinear Dynamics 49 (2007), 251-257.   CrossRef
  20. D. Matignon: Stability result on fractional differential equations with applications to control processing. In: Proc. IMACS-SMC (IMACS-SMC), Lille 1996, pp. 963-968.   CrossRef
  21. T. Menacer and N. Hamri: Synchronization of different chaotic fractional-order systems via approached auxiliary system the modified Chua oscillator and the modified Van der Pol-Duffing oscillator. Electr. J. Theoret. Phys. 8 (2011), 253-266.   CrossRef
  22. K. S. Miller and B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York 1993.   CrossRef
  23. C. A. Monje and V. Feliu: The fractional-order lead compensator. In: IEEE International Conference on Computational Cybernetics (ICCC), Vienna 2004, pp. 347-352.   CrossRef
  24. C. A. Monje, B. M. Vinagre, V. Feliu and Y. Q. Chen: Tuning and auto-tuning of fractional order controllers for industry applications. Control Engrg. Practice 16 (2008),798-812.   CrossRef
  25. G. J. Penga and Y. L. Jiang: Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Phys. Lett. A 372 (2008), 3963-3970.   CrossRef
  26. G. J. Penga, Y. L. Jiang and F. Chen: Generalized synchronization of fractional order chaotic systems. Physica A 387 (2008), 3738-3746.   CrossRef
  27. M. A. Savi: Chaos and order in biomedical rhythms. J. Brazil. Soc. Mechan. Sci. Engrg. 27 (2005), 157-169.   CrossRef
  28. D. V. Senthilkumar, M. Lakshmanan and J. Kurths: Phase synchronization in time-delay systems. Phys. Rev. E 74 (2006), 035205.   CrossRef
  29. K. S. Tang, G. Q. Zhong, G. Chen and K. F. Man: Generation of N-scroll attractors via Sine function. IEEE Trans. Circuits and Systems - I: Fundamental Theory Appl. 48 (2001), 1369-1372.   CrossRef
  30. M. S. Tavazoei, M. Haeri, S. Bolouki and M. Siami: Using fractional-order integrator to control chaos in single-input chaotic systems. Nonlinear Dynamics 55 (2009), 179-190.   CrossRef
  31. L. A. B. Torres and L. A. Aguirre: Transmitting information by controlling nonlinear oscillators. Physica D 196 (2004), 387-406.   CrossRef
  32. R. S. Varga: Matrix Iterative Analysis. Springer, Berlin 2000.   CrossRef
  33. H. U. Voss: Dynamic long-term anticipation of chaotic states. Phys. Rev. Lett. 87 (2001), 014102.   CrossRef
  34. Z. Wang, Y. T. Wu, Y. X. Li and Y. J. Zou: Adaptive backstepping control of a nonlinear electromechanical system with unknown parameters. In: Proc. 4th International Conference on Computer Science and Education (ICCSE), Nanning 2009, pp. 441-444.   CrossRef
  35. Z. Wang, Y. T. Wu and Y. J. Zou: Analysis and sliding control of multi-scroll jerk circuit chaotic system. J. Xi'an University of Science and Technology 29 (2009), 765-768.   CrossRef
  36. T. Yang and L. O. Chua: Generalized synchronization of chaos via linear transforms. Internat. J. Bifurcation Chaos 9 (1999), 215-219.   CrossRef
  37. R. Zhang, Z. Y. Xu, S. X. Yang and X. M. He: Generalized synchronization via impulsive contro. Chaos, Solitons Fractals 38 (2008), 97-105.   CrossRef
  38. P. Zhou, X. F. Cheng and N. Y. Zhang: Generalized synchronization between different fractional-order chaotic systems. Commun. Theoret. Phys. 50 (2008), 931-934.   CrossRef