Kybernetika 62 no. 1, 7-17, 2026

A note on measurable modifications

Martin Ondreját and Jan SeidlerDOI: 10.14736/kyb-2026-1-0007

Abstract:

We present, with purely didactic aims, a simple and essentially self-contained proof of two necessary and sufficient conditions for existence of a measurable modification of a stochastic process with values in a separable complete metric space. Existence of a measurable modification of a stochastic process continuous in probability is an immediate consequence.

Keywords:

stochastic processes, measurable modification

Classification:

60G05

References:

  1. M. R. Burke, N. D. Macheras and W. Strauss: Measurability of stochastic processes on topological probability spaces. Topology Appl. 370 (2025), 109438, 37 pp.   DOI:10.1016/j.topol.2025.109438
  2. D. L. Cohn: Measurable choice of limit points and the existence of separable and measurable processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 161-165.   DOI:10.1007/BF00532735
  3. K. L. Chung and J. L. Doob: Fields, optionality and measurability. Amer. J. Math. 87 (1965), 397-424.   CrossRef
  4. G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge 1992.   CrossRef
  5. C. Dellacherie and P.-A. Meyer: Probabilités et potentiel, Chapitres I à IV. Hermann, Paris 1975.   CrossRef
  6. J. L. Doob: Stochastic Processes. Wiley, New York 1953.   CrossRef
  7. D. H. Fremlin: Measure Theory, Vol. 2. Second edition. Torres Fremlin, Colchester 2010.   CrossRef
  8. H. Geiss and S. Geiss: Measure, Probability and Functional Analysis. Springer, Cham 2025.   CrossRef
  9. I. I. Gikhman and A. V. Skorokhod: Introduction to the Theory of Random Processes. W. B. Saunders Co., Philadelphia 1969.   CrossRef
  10. I. I. Gihman and A. V. Skorohod: The Theory of Stochastistic Processes I. Springer-Verlag, New York 1974.   CrossRef
  11. S.-w. He, J.-g. Wang and J.-a. Yan: Semimartingale Theory and Stochastic Calculus. CRC, Boca Raton 1992.   CrossRef
  12. J. Hoffmann-Jørgensen: Existence of measurable modifications of stochastic processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 205-207.   DOI:10.1007/BF00535892
  13. J. Hoffmann-Jørgensen: Stochastic Processes on Polish Spaces. Various Publ. Ser. (Aarhus) 39, Aarhus Universitet, Matematisk Institut, Aarhus 1991.   CrossRef
  14. Y. Kawada: On the measurable stochastic processes. Proc. Phys.-Math. Soc. Japan (3) 23 (1941), 512-527.   CrossRef
  15. A. Klenke: Probability Theory. Third edition. Springer, Cham 2020.   CrossRef
  16. R. Mansfield and S. G. Weitkamp: Recursive Aspects of Descriptive Set Theory. Oxford University Press, New York 1985.   CrossRef
  17. P.-A. Meyer: Probability and Potentials. Blaisdell, Waltham 1966.   CrossRef
  18. J. Neveu: Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco 1965.   CrossRef
  19. M. Ondreját and J. Seidler: On existence of progressively measurable modifications. Electron. Commun. Probab. 18 (2013), 20, 6 pp.   DOI:10.1214/ecp.v18-2548
  20. R. L. Schilling and F. Kühn: Counterexamples in Measure and Integration. Cambridge University Press, Cambridge 2021.   DOI:10.26226/morressier.60c8d83cbea1445efd9a1905
  21. A. V. Skorokhod: On measurability of stochastic processes. Theory Probab. Appl. 25 (1980), 139-141.   DOI:10.1137/1125012
  22. S. M. Srivastava: A Course on Borel Sets. Springer, New York 1998.   CrossRef