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A NOTE ON MEASURABLE MODIFICATIONS

Martin Ondreját and Jan Seidler

We present, with purely didactic aims, a simple and essentially self-contained proof of two
necessary and sufficient conditions for existence of a measurable modification of a stochastic
process with values in a separable complete metric space. Existence of a measurable modifica-
tion of a stochastic process continuous in probability is an immediate consequence.
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1. INTRODUCTION

A necessary and sufficient condition for existence of a measurable modification of a
stochastic process was essentially found in the early papers [3, 14] and also the basic
structure of the proof – to use approximations with simple functions and suitable mea-
surable selectors to find a measurable version of their limit – is well established. However,
it seems hard, as out teaching experience shows, to find a reference to a version of the
result and its proof that is reasonably self-contained, elementary and covers processes
with values in Polish spaces (which are needed, e. g., in the theory of stochastic partial
differential equations) and we aim at providing such a reference. The starting point for
us was the seminal paper [2] by D. Cohn, however, treating non-compact state spaces we
had to supply a different proof. Proofs in the particular case of processes continuous in
probability which meet the above criteria are available, but the argument in the general
case is not very different or more difficult and the result is worth being known.

J. Hoffmann–Jørgensen later found a rather different necessary and sufficient condi-
tion in terms of two-dimensional marginals. For completeness, we decided to include a
version of his result into our paper, although in this case it was not necessary to make
substantial changes in the standard proof.

We consider stochastic processes indexed by a measurable space S since, first, the
proof is exactly the same as for the particular choice S = R≥0 and, secondly, our theorem
then applies to various classes of random fields. Processes indexed by metric spaces were
considered already in [2] and the books [9, 10], but the metric structure was required
mainly in a construction of a separable modification. (We do not consider separable
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modifications in this paper referring the reader to e. g. [17, § IV.2] or [2] for a discussion
of separable processes.)

2. MAIN RESULTS

Let (U,κ) be a separable complete metric space, (Ω,F ,P) a probability space (not ne-
cessarily complete), and let the space of all equivalence classes of U -valued F -measurable
functions on Ω be denoted by L0(P;U) or L0(F ;U). (Equivalence is, of course, defined
as equality P-almost surely.) If f : Ω −→ U is an F -measurable function, its equivalence
class will be denoted (following [7]) by f• ∈ L0(P;U). Set κ1 = κ ∧ 1, in the space
L0(P;U) we define a metric

d(f•, g•) =

∫
Ω

κ1(f(ω), g(ω)) dP(ω), f•, g• ∈ L0(P;U);

d plainly does not depend on the choice of representatives in equivalence classes. It is
well known that (L0(P;U), d) is a complete metric space and convergence in the metric
d is just the convergence in probability (cf. e. g. [15, § 6.1]).

Both finite and countable infinite sets are called countable in the sequel. If S is a
metric space, it is always equipped with its Borel σ-algebra. We say that a σ-algebra
G ⊆ F is P-countably generated if there exists a countable system C ⊆ G such that
for any A ∈ G a set A′ ∈ σ(C ) may be found satisfying P(A△A′) = 0. In this case we
say that C P-generates G . (Plainly, if G is generated by a countable algebra then it is
P-countably generated.)

Theorem 2.1. Let X = (Xs, s ∈ S) be a U -valued stochastic process defined on the
probability space (Ω,F ,P) and indexed by a measurable space (S,S ). Set

X : S −→ L0(P;U), s 7−→ X•
s .

Then the following conditions are equivalent:

(a) X has a S ⊗ F -measurable modification.

(b) The mapping X is S -measurable with a separable range RngX .

(c) The σ-algebra σ(Xs, s ∈ S) is P-countably generated and there exists G ⊆ B(U)
closed under formation of finite intersections, generating B(U), U ∈ G , and such
that the function

S −→ R, r 7−→ P
{
(Xs, Xr) ∈ A×B

}
(1)

is S -measurable for every s ∈ S and A,B ∈ G .

Corollary 2.2. Assume that S is a separable metric space and X = (Xs, s ∈ S) a
U -valued stochastic process defined on (Ω,F ,P) continuous in probability. Then X
admits a measurable modification.

Let us recall that a mapping η from a measurable space (T,T ) into a metric space V
is called T -measurable provided η−1(B) ∈ T for every Borel set B ⊆ V , the stochastic
process X is called S ⊗F -measurable if the mapping S×Ω −→ U , (s, ω) 7−→ X(s, ω) is
S ⊗F -measurable and that a process X̃ = (X̃s, s ∈ S) is a modification of X provided
P{ω ∈ Ω; X(s, ω) = X̃(s, ω)} = 1 for every s ∈ S.
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Remark 2.3. (An important one.) If S is a Polish space (i. e. a separable completely
metrisable space), in particular any interval in R≥0, the hypothesis that X has a sep-
arable range is superfluous, as the following theorem shows: if f : Y −→ Z is a Borel
mapping from a Polish space Y into an arbitrary metric space Z then f has a sep-
arable range. The proof is short and easy provided one knows (the rather nontrivial
fact) that uncountable analytic sets in a Polish space have cardinality 2ℵ0 . Up to our
best knowledge, this theorem appeared for the first time in [2, Remark] as a result of
Calvin Moore communicated to the author by R.M. Dudley. Apparently independently
the same result with an essentially identical proof is given in the book [16, Lemma 9.1]
(in a chapter written by S.G. Simpson) and as Simpson’s result it is reproduced in the
textbook [22, Theorem 4.3.8].

3. PROOFS

Before proving Theorem 2.1 we first establish two auxiliary lemmas. The first of them
is a version of a functional form of the monotone class theorem for metric space valued
functions. We state it separately since it might be useful also elsewhere. (For a simple
proof of the classical functional monotone class theorem see e. g. [11, Theorem 1.4] or
[8, Theorem B.1.7].)

Lemma 3.1. Let A be an algebra of subsets of a set S, U a separable metric space
and H a space of functions S −→ U satisfying the following conditions:

(i) H is closed under pointwise convergence on S;

(ii) H ⊇ R, where R is the set of all U -valued A -measurable functions on S taking
only finitely many values.

Then H contains all σ(A )-measurable U -valued functions.

(A is not a σ-algebra, but A -measurability of a function taking only finitely many
values has an obvious meaning.)

P r o o f . We set S = σ(A ) and whenever {V1, . . . , Vr} is a partition of S into disjoint
sets and v1, . . . , vr ∈ U we shall denote – in the proofs of this and the next lemmas only
– by

⊕r
j=1 vj1Vj the function taking value vj on the set Vj , 1 ≤ j ≤ r.

Separability of U implies that any S -measurable U -valued function can be uni-
formly approximated by a function with a countable range, hence it is a pointwise
limit of S -measurable functions taking only finitely many values. (If it is not clear one
can consult e. g. [19, Lemma 0.4].) Assume that φ is such a function, so there exist
K ≥ 1, u1, . . . , uK ∈ U and a partition {M1, . . . ,MK} of S into pairwise disjoint sets
M1, . . . ,MK ∈ S such that

φ =

K⊕
i=1

ui1Mi
; (2)

we aim at proving that φ ∈ H. Fix an arbitrary partition {A2, . . . , Am} of S into
pairwise disjoint sets A2, . . . , Am ∈ A , m ≥ K, and points v2, . . . , vm ∈ U ; let us
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consider a function

ψN = u11N ⊕
m⊕
j=2

vj1Aj\N

for a set N ∈ S . If N ∈ A then ψN ∈ R, hence the system N =
{
N ∈ S ; ψN ∈ H

}
contains A by assumption (ii) of Lemma 3.1 and it is a monotone class. Indeed, if
Nk ∈ N , Nk ↗ N as k → ∞, then ψNk

−→ ψN as k → ∞ on S, and analogously for
monotone intersections. Consequently, N = S , in particular ψM1 ∈ H for an arbitrary
choice of a partition {A2, . . . , Am} and points v2, . . . , vm. As the next step, consider the
function ζN : S −→ U ,

ζN = u11M1
⊕ u21N\M1

⊕
m⊕
j=2

vj1(Aj\N)\M1

for N ∈ S . If N ∈ A , then ζN = ψN for the choice of the A -measurable parti-
tion {N,A2 \ N, . . . , Am \ N} and points u2, v2, . . . , vm, therefore ζN ∈ H. Using the
monotone class theorem as above we find that

u11M1
⊕ u21M2

⊕
m⊕
j=2

vj1Aj\(M1∪M2) ∈ H.

(Note that M2 \M1 = M2 as M1, M2 are disjoint.) Repeating this argument K times
and taking into account that Aj \ (M1 ∪ · · · ∪MK) = ∅, j = 1, . . . ,m, we prove that
function (2) is in H. □

The second lemma concerns separability of L0-spaces. The result is surely well known
but we cannot find any reference and so we provide a proof.

Lemma 3.2. (i) If the σ-algebra F is P-countably generated then the space L0(F ;U)
is separable.

(ii) Let D = {Fγ ; γ ∈ Γ} be a separable subset of L0(F ;U). Fix a system of
representatives fγ ∈ Fγ , γ ∈ Γ in an arbitrary way, then the σ-algebra σ(fγ ; γ ∈
Γ ) is P-countably generated.

Note that in Part (ii) of Lemma 3.2 it is not assumed that F is P-countably generated.

P r o o f . Whenever {V1, . . . , Vr} is a partition of Ω into disjoint sets and v1, . . . , vr ∈ U
we shall again denote by

⊕r
j=1 vj1Vj the function taking value vj on the set Vj , 1 ≤ j ≤ r.

i) The proof of Part (i) resembles the standard proof that L1(Ω,F ,P) is separable if
F is P-countably generated but some caution is necessary since L0(F ;U) lacks a linear
structure. Let us fix ε > 0 and f• ∈ L0(F ;U) arbitrarily. As U is separable, we can
find an F -measurable function g : Ω −→ U with a finite range such that d(f•, g•) < ε.
Let x1, . . . , xN ∈ U and a partition {B1, . . . , BN} of Ω into disjoint sets from F be such

that g =
⊕N

j=1 xj1Bj . Let U0 ⊆ U be a countable dense subset, find y1, . . . , yN ∈ U0

satisfying κ(xj , yj) < ε for j = 1, . . . , N and set h =
⊕N

j=1 yj1Bj
. Then

d(g•, h•) =

N∑
j=1

∫
Bj

κ1(g(ω), h(ω)) dP(ω) =
N∑
j=1

κ1(xj , yj)P(Bj) < ε.
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By assumption there exists a countable algebra G ⊆ F P-generating F . It is well known
that A1, . . . , AN ∈ G may be found satisfying P(Bj△Aj) < N−2ε, j = 1, . . . N , define

C1 = A1, Cj = Aj \ (A1 ∪ · · · ∪Aj−1), j = 2, . . . , N, CN+1 = Ω \
N⋃
j=1

Aj .

Plainly, C1, . . . , CN+1 ∈ G form a disjoint partition of Ω. Define p : Ω −→ U by

p =
⊕N+1

j=1 yj1Cj
with yN+1 = yN , we aim at proving that d(h•, p•) < ε. We have

d(h•, p•) =

N∑
j=1

∫
Bj

κ1(h(ω), p(ω)) dP(ω) =
N∑
j=1

∫
Bj\Cj

κ1(h(ω), p(ω)) dP(ω)

≤
N∑
j=1

P(Bj \ Cj)

since h = p on Bj∩Cj , j = 1, . . . , N . Clearly P(B1\C1) = P(B1\A1) ≤ P(B1△A1) < ε.
Further, for j = 2, . . . , N we get

Bj \ Cj = Bj \
(
Aj \ (A1 ∪ · · · ∪Aj−1)

)
⊆ (Bj \Aj) ∪

j−1⋃
i=1

(Bj ∩Ai) ⊆
j⋃

i=1

(Bi△Ai),

we have used that if i ̸= j, z ∈ Bj ∩Ai then z /∈ Bi as Bj ∩Bi = ∅. Therefore

P(Bj \ Cj) ≤
j∑

i=1

P(Bi△Ai), j = 1, . . . , N,

consequently

d(h•, p•) ≤
N∑
j=1

j∑
i=1

P(Bi△Ai) =

N∑
j=1

(N + 1− j)P(Bj△Aj) ≤ N

N∑
j=1

P(Bj△Aj) < ε.

Let us denote by D the set of all functions ψ : Ω −→ U of the form ψ =
⊕K

j=1 uj1Ej

for some K ≥ 1, u1, . . . , uK ∈ U0 and a partition {E1, . . . , EK} of Ω into disjoint
sets A1, . . . , AK ∈ G . The set D is countable and we proved that for any ε > 0 and
f• ∈ L0(F ;U) there exists b ∈ D such that d(f•, b•) < 3ε. Separability of L0(F ;U)
follows.

ii) Let D0 = {Fγ(n), n ≥ 1} be a countable dense subset of D. Set Ã = σ(fγ(n), n ≥
1), the σ-algebra Ã is plainly countably generated as B(U) is countably generated. Let
N = {N ∈ F ; P(F ) = 0} and define A = σ(Ã ∪N ); the σ-algebra A is P-countably
generated. If Fβ ∈ D then there exist Fγ(nk) ∈ D0 such that d(Fβ , Fγ(nk)) −→ 0 as
k → ∞, hence fγ(nk) −→ φ in P-probability for a function φ ∈ Fβ . Obviously, fγ(nk)

are Ã -measurable, thus φ is Ã -measurable and {φ ̸= fβ} ∈ N , therefore fβ is A -
measurable. Consequently,

σ(fγ(n), n ≥ 1) = Ã ⊆ σ(fγ , γ ∈ Γ ) ⊆ A = σ(Ã ∪ N ),

necessarily, σ(fγ , γ ∈ Γ ) is P-countably generated. □
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P r o o f of Theorem 2.1. i) First let us assume that the condition (b) is satisfied, we aim
at showing that (a) holds. By (b), there exists a sequence of S -measurable mappings
Hn : S −→ L0(P;U), n ≥ 1, with a countable range such that

sup
s∈S

d
(
Hn(s), X

•
s

)
<

1

22n
for any n ≥ 1.

AsHn’s are simple functions, for any n ≥ 1 there exist a countable partition (B(n, k))k∈Kn

of S into sets from S and points Hn,k ∈ L0(P;U), k ∈ Kn, where Kn ⊆ N, such that

Hn(s) = Hn,k for s ∈ B(n, k), k ∈ Kn.

Let us choose F -measurable functions hn,k : Ω −→ U satisfying h•n,k = Hn,k, n ≥ 1,
k ∈ Kn, and define

Xn : S ×Ω −→ U, Xn(s, ω) = hn,k(ω) for s ∈ B(n, k), k ∈ Kn, n ≥ 1.

For any A ∈ B(U) we have{
(s, ω) ∈ S ×Ω; Xn(s, ω) ∈ A

}
=

⋃
k∈Kn

(
B(n, k)× h−1

n,k(A)
)
∈ S ⊗ F ,

so Xn is a measurable U -valued process. Set

Γ =
{
(s, ω) ∈ S ×Ω; ∃ lim

n→∞
Xn(s, ω) in U

}
.

Since U is complete,

Γ =

∞⋂
α=1

∞⋃
m=1

∞⋂
k,r=m

{
(s, ω) ∈ S ×Ω; κ(Xk(s, ω), Xr(s, ω)) <

1

α

}
∈ S ⊗ F ,

hence choosing an arbitrary point u0 ∈ U and defining X̃ by

X̃(s, ω) =

{
lim
n→∞

Xn(s, ω), (s, ω) ∈ Γ,

u0, otherwise,

we get an S ⊗ F -measurable process. It remains to prove that X̃ is a modification of
X. To this end, fix s ∈ S. Since Xn(s)

• = Hn(s), we have

d
(
Xn(s)

•, X(s)•
)
=

∫
Ω

min
(
1,κ(Xn(s, ω), X(s, ω))

)
dP(ω) <

1

22n
,

which implies that

P
{
ω ∈ Ω; κ(Xn(s, ω), X(s, ω)) >

1

2n
}
<

1

2n

for all n ≥ 1. Invoking the Borel-Cantelli lemma we find that (Xn(s, ω))
∞
n=1 converges

to X(s, ω) for P-almost all ω ∈ Ω and Xs = X̃s P-almost surely follows by the definition
of X̃.
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ii) Now assume that X has a measurable modification, we shall prove that the con-
dition (b) is satisfied. As a process and its modification define the same mapping
S −→ L0(P;U), we may (and will) assume that X itself is measurable.

Let us denote by A the algebra generated by measurable rectangles in S ⊗ F ,
its elements are finite disjoint unions of measurable rectangles. Plainly, A generates
S ⊗ F . Let R be the set of all functions χ : S × Ω −→ U such that there exist
L ≥ 1, u1, . . . , uL ∈ U and a partition {A1, . . . , AL} of S ×Ω into pairwise disjoint sets
from A satisfying χ = uj on Aj , 1 ≤ j ≤ L. Consider the system G of all functions
ξ : S ×Ω −→ U such that the corresponding mapping S −→ L0(Ω;U), s 7−→ ξ(s, ·)• is
S -measurable and has a separable range. We aim at proving that all S ⊗F -measurable
U -valued functions are in G, however, it can be checked easily that R ⊆ G and that
G is closed under pointwise convergence, thus invoking Lemma 3.1 we immediately see
that (b) is satisfied.

iii) Further we shall show that (a) implies (c). We have already proved that RngX
is separable, thus the σ-algebra σ(Xs, s ∈ S) is P-countably generated. Clearly, the
probability P{(Xs, Xr) ∈ A×B} is the same for X and its measurable modification, so
we may assume that X is measurable and then the S -measurability of (1) follows by
the Fubini theorem.

iv) Finally, we claim that if (c) is satisfied then (b) holds. Set T = σ(Xs, s ∈ S)
then RngX ⊆ L0(T ;U) and from Lemma 3.2 we know that L0(T ;U) is separable,
hence RngX is separable as well. Let R be the set of all real-valued bounded functions
g on U × U such that the function r 7−→ Eg(Xs, Xr) is S -measurable for any s ∈
S. Obviously, R is a vector space containing constants and closed under pointwise
convergence of uniformly bounded sequences. Moreover, 1A×B ∈ R whenever A,B ∈
G by (1), thus by the functional form of the monotone class theorem R contains all
bounded B(U) ⊗ B(U)-measurable functions, in particular κ1 ∈ R. Consequently,
r 7−→ Eκ1(Xs, Xr) = d(X•

s , X
•
r ) is S -measurable for all s ∈ S. Let W ⊆ L0(F ;U)

be an arbitrary open set, separability of RngX implies that there exist sm ∈ S and
εm > 0, m ∈ N, such that

W ∩ RngX =
⋃
m∈N

{
F ∈ RngX ; d(X(sm)•, F ) < εm

}
,

whence

X −1(W ) =
⋃
m∈N

{
r ∈ S; d(X(sn)

•, X(r)•) < εm} ∈ S .

We see that X is S -measurable. □

P r o o f of Corollary 2.2. Continuity in probability means that the mapping X : S −→
L0(P;U), s 7−→ X•

s is continuous, so obviously Borel measurable, and a continuous
image of a separable metric space is separable, as may be checked very easily, whence
we see that the condition (b) from Theorem 2.1 is satisfied. □
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Remark 3.3. Separability of U is plainly used in the proof of Theorem 2.1 whenever
approximation with simple functions is needed. In other parts of the proof it appears in a
hidden way: it yields that κ is B(U)⊗B(U)-measurable and hence the metric d is well-
defined. (The metric κ is of course B(U×U)-measurable, but B(U×U) ⫌ B(U)⊗B(U)
may happen in the non-separable case. Corresponding examples may be found e. g. in
[20, Examples 15.5–15.7].)

Remark 3.4. Our aim in this remark is to compare Theorem 2.1 and its Corollary
2.2 with some results frequently quoted in textbook; in no case we intend to survey
available results on measurable modification. We still consider a U -valued stochastic
process X = (Xs, s ∈ S) defined on a probability space (Ω,F ,P) and the associated
mapping X introduced in Theorem 2.1. We shall denote by λ the Lebesgue measure on
R and by U µ a completion of a σ-algebra U with respect to a measure µ defined on it.

Originally, measurable processes were defined (sometimes implicitly) as functions on
the product space measurable with respect to the completed product σ-algebra. J. L.
Doob in [6, Theorem II.2.6] considered the case when S is a measurable subset of R,
U = [−∞,∞], and showed that X continuous in probability λ-almost everywhere has
a (B(S) ⊗ F )λ⊗P-measurable modification. This result was extended in [9, Theorem
IV.3.1] and [10, Theorem III.3.1] to the case of a separable locally compact metric
space U and a complete separable metric space S equipped with a complete σ-finite
measure µ. A process X continuous in probability µ-almost everywhere was shown to
admit a (B(S) ⊗ F )µ⊗P-measurable modification. In early papers, usually separable
measurable modifications are considered, which may yield additional restrictions on U ;
in particular, in [9, 10] it is noted that completeness of U is sufficient if separability
of the modification is not required, but no details are provided. A direct precursor of
Theorem 2.1 is a result of Kawada [14, Theorem 2]: for S = [0, 1], U = R it is shown
that X has a (B(S)⊗ F )λ⊗P-measurable modification iff X is λ-almost everywhere a
limit of simple functions. (See also [3, Proposition 34].)

With the current definition of a measurable process, J. Neveu in [18, Chapter III.4]
proved that for U = [−∞,∞] and S an interval in [−∞,∞] continuity in probability
of X implies existence of a measurable modification. Due to a particular choice of the
state space, limit superior may be used as a measurable selector in the construction of
the modification. Theorem 2.1 (without the condition (c)) appeared in [3, Proposition
32] in the case when S = R and U is a separable metric space. (Note, however, that
completeness of U is tacitly used in the proof; completeness is in fact essential, see [1,
Example 8.6]. Moreover, separability of U is not assumed explicitly but built in via
an additional hypothesis on X that is always satisfied in separable spaces. It is shown
in [1, § 8] that, unfortunately, [3, Propositin 32] need not be valid in non-separable
spaces U .) The same result for S = R≥0 and U = [−∞,∞] appears in the book [5,
Théorème IV.30]. The condition (b) is stated there directly as existence of measurable
step functions converging uniformly in L0 to X and weak convergence in L1 is used to
find a product measurable version of the limit.

Our statement of Theorem 2.1 (still without condition (c)) is taken from [2, Theorem
3], Corollary 2.2 is given there as Theorem 2. However, in [2] only compact spaces U
are considered and our proof of sufficiency of the condition (b) in Theorem 2.1, based on
the an argument from [19], is completely different from Cohn’s one, which is short and



Measurable modifications 15

very elegant, but uses a lemma on measurable selectors which seems to be specific for
compact spaces. Let us note, however, that the direct proof of Corollary 2.2 (avoiding
Theorem 2.1) given in [4, Proposition 3.2] in the case of a separable Banach space U is
close in spirit to our proof. On the other hand, our proof of necessity of (b) follows the
paper [2] rather closely, but we distilled Lemma 3.1 from Cohn’s proof and we provide
more details. (In [2], processes are indexed by a separable metric space S, but the metric
in not used when measurable – and not measurable separable – modifications are dealt
with.)

The condition (c) from Theorem 2.1 was proposed by J. Hoffmann–Jørgensen, see
[12], in a slightly different form: instead of requiring that σ(Xs, s ∈ S) is countably
generated a suitable separability condition was stated in terms of weak convergence of
measures (Xs, Xr)#P, (s, r) ∈ S2. The paper [2] is used in [12] and so it is assumed
there that U is a compact metric space and S a metric separable space but the short and
ingenious proof clearly remains valid under hypotheses of Theorem 2.1. (It is remarked
in [12] that it is so, but without further discussion.) We follow the paper [12] rather
closely, altering only the discussion of separability in L0-spaces. The condition (c), in the
present form, is thoroughly studied in [13, Chapter 5] under rather general hypotheses
on the spaces S and U . (Cf. also the paper [21, Theorem 1], where the condition was
rediscovered.)

Remark 3.5. Let U be an uncountable Polish space, set I = [0, 1]. By the Borel
isomorphism theorem (see e. g. [22, Theorem 3.3.13]) there exists a Borel measurable
bijection ι : U −→ I with a Borel measurable inverse ι−1. LetX be a U -valued stochastic
process. If the process ι(X) = (ι(Xs), s ∈ S) admits a measurable modification X̃ then
ι−1(X̃) is a measurable modification of X, so we may content ourselves with compact
metric spaces U in Theorem 2.1 once it is checked that the process ι(X) satisfies the
condition (b) of Theorem 2.1 if X does so. It is true, but no straightforward proof is
known to us. For example one may proceed in the following way: Any Borel measurable
mapping j : U −→ I defines a mapping ℓ(j) : L0(P;U) −→ L0(P; I), f• 7−→ (j ◦ f)•, we
must prove that ℓ(j) is Borel measurable. It is not difficult to show that a continuous
j leads to a continuous ℓ(j) and that a pointwise convergent sequence (jk) of Borel
measurable mappings from U to I gives rise to a pointwise convergent sequence (ℓ(jk)) of
associated mappings from L0(P;U) to L0(P; I). Hence we may use transfinite induction
to show that a Baire function j of any class α < ω1 defines a Borel mapping ℓ(j). The set
of all I-valued Baire function coincides with the set of all Borel measurable functions (see
e. g. [22, Theorem 3.1.36]), in particular, ℓ(ι) is a Borel mapping, in other words, ι(X)
satisfies the condition (b). (Note that Remark 2.3 is needed to show separability of the
range of ℓ(ι)(X ).) (In [13] one can find related considerations in a bit different context.
It should be emphasized that [13] contains many results deeper and more general than
those in our paper, however, their proofs often require quite advanced tools.)

The Borel isomorphism theorem is used in [21] and [13] also to replace L0-spaces
with L2-spaces and L1-spaces, respectively, so that well-known criteria for separability
of these spaces may be applied.

In our opinion, our direct proof of Theorem 2.1 for an arbitrary Polish space U
corresponds much better to our aim of providing an elementary and self-contained proof.
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