Kybernetika 62 no. 1, 18-34, 2026

Epi-convergence in distribution of normal integrands with applications to sets of ϵ-optimal solutions

Dietmar FergerDOI: 10.14736/kyb-2026-1-0018

Abstract:

We derive necessary and sufficient conditions for epi-convergence in distribution of normal integrands. As a basic tool for the proof a new characterisation for distributional convergence of random closed sets is used. Our approach via the epi-topology allows us to show that, if a net of normal integrands epi-converges in distribution, then the pertaining sets of $\epsilon$-optimal solutions converge in distribution in the underlying hyperspace endowed with the upper Fell topology. Under some boundedness and uniquenss assumptions the convergence even holds for the Fell topology. Finally, measurable selections converge weakly to a Choquet-capacity.

Keywords:

random closed sets, weak convergence, epi-topology, hyperspaces, Fell topologies, capacity functionals

Classification:

60B05, 60B10, 26E25

References:

  1. H. Attouch: Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitmann, London 1984.   CrossRef
  2. G. Beer: Topologies on Closed and Closed Convex Sets. Kluwer Academic Publishers, Dordrecht 1993.   CrossRef
  3. P. Billingsley: Convergence of Probability Measures. Second Edition. John Wiley and Sons, New York 1999.   CrossRef
  4. J. Fell: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Amer. Math. Soc. 13 (1962), 472-476.   DOI:10.1090/S0002-9939-1962-0139135-6
  5. D. Ferger: Weak convergence on topological hyperspaces and random closed sets. Lecture notes, Technische Universität Dresden 2024.   CrossRef
  6. D. Ferger: A continuous Mapping Theorem for the Argmin-set functional with applications to convex stochastic processes. Kybernetika 57 (2021), 426-445.   DOI:10.14736/kyb-2021-3-0426
  7. D. Ferger: Weak convergence of probability measures on hyperspaces with the upper Fell topology. Bull. Iranian. Math. Soc. 50 (2024), 79.   DOI:10.1007/s41980-024-00927-3
  8. D. Ferger: Weak convergence of probability measures to Choquet capacity functionals. Turkish J. Math. 42 (2018), 1747-1764.   DOI:10.3906/mat-1705-106
  9. D. Ferger: Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies. Theory Stoch. Process. 20 (2015), 36, 13-41.   CrossRef
  10. P. Gänssler and W. Stute: Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg 1977.   CrossRef
  11. O. Gersch: Convergence in Distribution of Random Closed Sets and Applications in Stability Theory of Stochastic Optimisation. PhD thesis, Technische Universität Ilmenau 2007.   CrossRef
  12. O. Kallenberg: Foundations of Modern Probability. Third Edition, Volume 2. Springer Nature Switzerland AG 2021.   CrossRef
  13. I. Molchanov: Theory of random sets. Second Edition. Springer-Verlag London 2017.   CrossRef
  14. T. Norberg: Convergence and existence of random set distributions. Th. Probab. Appl. 12 (1984), 726-732.   CrossRef
  15. G. Ch. Pflug: Asymptotic dominance and confidence for solutions of stochastic programs. Czechoslovak J. Oper. Res. 1 (1992), 21-30.   CrossRef
  16. R. T. Rockafellar and R. J.-B. Wets: Variational Analysis. Springer-Verlag, Berlin, Heidelberg 1998.   CrossRef
  17. G. Salinetti and R. J.-B. Wets: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385-419.   CrossRef
  18. T. B. Singh: Introduction to Topology. Springer Nature Singapore 2019.   CrossRef
  19. R. Schneider and W. Weil: Stochastic and Integral Geometry. Springer-Verlag, Berlin, Heidelberg 2008.   CrossRef
  20. F. Topsøe: Topology and Measure. Lecture Notes in Mathematics 133, Springer-Verlag, Berlin - Heidelberg - New York 1970.   CrossRef
  21. H. E. Vaughan: On Locally Compact Metrisable Spaces. Bull. Amer. Math. Soc. 43 (1937), 532-535.   DOI:10.1090/S0002-9904-1937-06593-1
  22. S. Vogel: Semiconvergence in distribution of random closed sets with application to random optimization problems. Ann. Oper. Res. 142 (2006), 269-282.   DOI:10.1007/s10479-006-6172-0