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EPI-CONVERGENCE IN DISTRIBUTION
OF NORMAL INTEGRANDS WITH APPLICATIONS
TO SETS OF «OPTIMAL SOLUTIONS

DIETMAR FERGER

We derive necessary and sufficient conditions for epi-convergence in distribution of normal
integrands. As a basic tool for the proof a new characterisation for distributional convergence
of random closed sets is used. Our approach via the epi-topology allows us to show that, if
a net of normal integrands epi-converges in distribution, then the pertaining sets of e-optimal
solutions converge in distribution in the underlying hyperspace endowed with the upper Fell
topology. Under some boundedness and uniquenss assumptions the convergence even holds for
the Fell topology. Finally, measurable selections converge weakly to a Choquet-capacity.
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1. INTRODUCTION

Let (E,G) be a locally compact second countable Hausdorff-space (lcscH) with F and
K the pertaining families of all closed sets and all compact sets, respectively. E is called
the carrier space. We want to equip F with some topology. For that purpose introduce
for every subset A C E the systems M(A) :={F € F: FNA =0} of all missing sets
and H(A) :={F € F: FN A # 0} of all hitting sets of A. Put

S:={M(K):KecK}U{H(G):Geg}C2”.

Then the topology on F generated by S is called Fell topology and denoted by 7. It goes
back to J. Fell [4]. Convergence in the Fell topology is the same as convergence in the
sense of Painlevé— Kuratowski, confer Theorem C.7 in Molchanov [I3]. It induces the
Borel-o-algebra By := o(7F), the smallest o-algebra on F containing the Fell topology.
If (22, A,P) is some probability space, then by definition a random closed set (in E on
Q) is a map C : Q — F, which is A — By measurable. Occasionally, we will write
F =F(F) and 7 = 7p(F) in order to underline the basic carrier space E.

Besides random closed sets we will investigate so-called normal integrands. To explain
this notion first consider the collection S = S(E) of all lower semicontinuous (lsc)
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functions f : E — R, where R = [—00, o] is the extended real line:
S:={f:E—R,flscl.

Similarly as for F the function space S will be endowed with a topology. With this in
mind consider for each A C E the functional I4 : S — R defined by

La(f) = inf f(z).

Let the epi-topology 7. be the coarsest topology on S with respect to which Ik is Isc
for all K € K and Ig is upper semicontinuous (usc) for all G € G. Convergence in
the epi-topology is equivalent to epi-convergence. This follows from Theorem 5.3.2
in Molchanov [I3]. If B. := o(7.) is the corresponding Borel-o-algebra on S, then a
mapping Z : Q@ — S, that is A — B, measurable is called normal integrand (on Q).
According to Lemma 2.5 of Ferger [6] our notion of normal integrand coincides with
that of Molchanov [I3] and Rockafellar and Wets [16].

Given a directed set (J, <) and a family of probability spaces (Qq, Aq,Pa), @ € J, we
consider random closed sets C, in F and normal integrands Z, on €1,. In our paper
we first give an equivalent condition for distributional convergence of a net (Cy)acs to
a limit C:

Co 25C in (F,7p). (1)

Notice that the convergence in by definition is the same as convergence of the dis-
tributions Q, 1= Py 0 C5 ! to Po C~! =: Q in the weak topology:
Qa —w Q on (FvTF)' (2)

It follows from the definition of Topsge [20] or Génssler and Stute [I0] that weak con-
vergence holds for instance if and only if

liminf @Q,(0) > Q(0O) VO € 7p.

A short introduction of the weak topology and weak convergence of probability measures
on arbitrary topological spaces can be found in Ferger [7]. Once the above announced
criterion for or , respectively, is available it will be used to describe distributional
convergence of (Z,) to Z, i.e.

Zo 27 in (S,7.)
or what is the same
P, —, P on (S 7),

where P=PoZ ! and P, =P, 0 Z(;l are the distributions of Z and Z, under P and
P,, respectively. This is possible, because there is a strong relation between the two
spaces (F,7r) and (S, 7.), which can be expressed by epigraphs. Here, for any function
f: E — R the epigraph of f is the set

epi(f) :={(z,a) €e ExR: f(z) < a}.
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It is well-known that the function f is Isc if and only if epi(f) is a closed subset of E x R
endowed with the product-topology. Let £ = {epi(f) : f € S} C F(E xR) be the family
of all epigraphs and o be the subspace topology on £. Then Attouch [I], p.254-255,
shows that (€,0) is compact and that the map

¢ : (S,7) = (€, 0) defined by ¢(f) = epi(f), (3)
is a homeomorphism.

The paper is organized as follows: In the next section we derive a new necessary and
sufficient condition for weak convergence of probability measures on the hyperspace F
equipped with the Fell topology. This result is then used in section 3 to find a new
equivalent characterization for weak convergence of probability measures on the space
S of all lower semicontinuous functions endowed with the epi-topology. In section 4 we
show that epi-convergence in distribution of normal integrands entails the convergence
of the corresponding e-optimal solutions as random closed sets. In particularly, it follows
that single solutions converge in distribution to the almost sure unique minimizing point
of the limit normal integrand. If uniqueness is not given, then the solutions converge to
the entire set, say C, of all minimizers. The latter means that the distributions converge
weakly to the capacity-functional of C.

2. WEAK CONVERGENCE OF PROBABILITY MEASURES ON (F,7r)

In this section we give a necessary and sufficient condition for Q, —, @ on (F,7r).
As (E,G) is lescH it is metrisable. By Theorem 2 of Vaughan [21] there exists an
equivalent metric d such that every bounded set is relatively compact. Further, by
second countability there exists a countable and dense subset Ey C E. For a general
subset A of E, A%, A and A denote the interior, the closure and the boundary of A.
Let By(x,7) = B(z,r) and Bg(x,7) = B(z,r) be the open and closed ball with center
at z € F and radius r € R. (Observe that e.g. Bg(x,r) = 0 for r < 0.) Notice that
every closed ball is bounded and therefore is compact. Given a subset D C [0,00) we

introduce the family
Z/{(D) :{UE(IE“’I"Z)mEN,mZGEo,mED,lSZSm} (4)
i=1
If we agree to say that a closed ball with center in Fy and radius in D is called a closed
D-ball, then U (D) is the set of all finite unions of closed D-balls. Moreover, let
Ko ={K € £: QOrH(K)) =0} = {K € £: QH(K)) = QH(K")},  (5)

where Op A gives the boundary of a set A C F with respect to the Fell topology. Here,
the second equality follows from Lemma 4.3 in Ferger [7]. Deviating from the usual
naming convention, we call K € Kq a Q-continuity set.

Next, we specify the set D. For that purpose consider

Ri(x,r):={s>0:B(x,r £ 5) is a Q-continuity set},r > 0.
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It follows from (3.3) of Ferger [§] that the sets H(B(z,7+s),s > 0, are pairwise disjoint,
whence the complement Ry (z,7)¢ = {s > 0: Q(OrH(B(z,r + 5)) > 0} is denumerable.
Similarly, R_(z,r)¢ is denumerable as well. (Here, notice that H(B(z,r —s)) = H()) =
(). Therefore B(x,r — s) is a Q-continuity set for all s > r.) Thus the set

U Ry(x,m)¢U U R_(x,r)¢

r€Fy,reQ4 z€E,reQy

is still denumerable and so

R = m R-t,-(-’l'f,"")m m R—(xvr)

z€Eq,reQ4 z€E,reQ4

lies dense in [0,00). (Here Q4 denotes the set of all positive rational numbers.) In
particularly, there exists a sequence (si)ren in R such that s | 0. Finally, we define

D={r+s,:r€Qu,keN}U{r—sp:r€Qt,keNEk>n,},

where n,. € N is such that r —sj, > 0 for all n > n,.. Notice, that D = D(Ejy, Q)) depends
on Fy and Q. It is countable and lies dense in [0, 00), i.e. [0,00) € D. By constuction,
every closed D-ball is a @)-continuity set.

Theorem 2.1. The following two statements are equivalent:
(1) Qo —w Q@ on (F,7r).
(2)
1i£n Qa(H(U)) =Q(H((U)) forallU e U(D). (6)
Proof. Assume that (2) holds. Let
D:={B(z,r):x € Ey,r € Qy} and D:={B(x,r): 2 € Ep,7 € Q. }.
Then the family

Jj=1

m k
{BzﬂWMMQﬂH@ﬁmmN$eMmex%eﬁmwwmED}W)
=1

is known to be a countable base for 7p, confer Schneider and Weil [I9] or Ferger [5].
Consequently:

Every open O € 7F is a countable union of such base-sets B. (8)

We will show that in turn every base-set B can be represented as a countable union
as follows:
B = | JM(Uy) NH(B),)N... H(By,), (9)

kL
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where the union extends over all k = (ky,...,ky) € N™ and all [ = (Iy,...,1l;) € N*.
Moreover, all involved sets Uy, are elements of (D) and By, ..., B;, € U(D) are actually
single closed D-balls. For the proof of @[) consider a general set B from the countable

base : .
B = [\ M(Ci)n () H(Dy). (10)

Here, for each 1 < i < m there are x; € Ey and 7; € Q such that C; = B(x;,7;).
Then Ci(k) := B(x;,7; + s1) is a closed D-ball for every k € N. Furthermore, Ci(k) +

Ci,k — oo. By Lemma 4.5 in Ferger [7] we obtain that H(C;) = (;cn H(Ci(k)), whence
by complementation it follows that

M(Cy) = U M(Ci(k)) forall 1 <i<m. (11)
keN
For every 1 < j < k the sets D; are equal to B(z;,t;), where z; € Ey and t; € Q4.
Similarly as above D;l) = B(zj,t;—s) is a closed D-ball for each [ € N (possibly empty,
namely when s; > t;.) Clearly, D; = |,y D](.l) and therefore

H(D;) = JH(DV) forall 1 <j<k. (12)
leN

If we substitute and into , then the distributive law for sets gives us:

B = M) n. oM@y nm(D) L nH(DE). (13)
k.l

Notice that M(C’fkl)) Nn...N M(C’f,f)) = M(U;’;lCZ-(ki)). So, putting Uy := Ui~ C’i(ki)
and B, = D§lj ),1 < j < k, gives the representation . Moreover, conclude that
U € U(D) for all k € N™ and recall that B, ..., By, are closed D-balls for all [ € N*

as announced.

Introduce the family
C:={MU)NH(B1)NH(Br) : U €eU(D),k € Ny, By,..., By are closed D-balls}.

It follows from and @[) that every open set O € 7 is a countable union of sets from
C. One easily verifies that C C By is a w-system, i.e. closed under finite intersections.
Moreover,

Q.(C) = Q(C) for all C e (. (14)

We prove this by induction on k¥ € Ny. For k = 0 the sets in C simplify to C =
M(U). Thus the convergence in holds as a consequence of assumption (2) and the
complementation rule for probabilities. Next, consider k£ > 1. Check that

= [MU)NHB)N...NH(Br—1)]\ MU UBg)NH(B1)N...NH(Br-1)]
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Therefore, follows from the induction hypothesis, because clearly U U By, € U(D).
Now, as in the proof of Theorem 2.2 in Billingsley [3] we can deduce that lim inf, Q. (O)
> Q(0) for all open O € 7, which as we know is equivalent to (1).

Finally, assume that (1) holds. Then
lim Qa(H(K)) = Q(H(K)) forall K € Kg

by Theorem 1.7.7 of Molchanov [I3]. But (x) U (D) C Kqg, because, as we have seen,
every closed ball is compact and so is each finite union of them. Moreover, for closed
D-balls By, ..., B,, it follows that

0 < QOrH(UL1By)) = Q(Or ULy H(By)) < QUL 0rH (B Z Q(OrH(B;)) =0,

whence |J~, B; € K¢ and thus (x) holds. This shows the validity of (2). O

If (P.)aen is a sequence, then there are comparable results in the literature, where
U(D) is replaced by another family, say V. In Kallenberg [I2] and Norberg [14] V is a
separating class, confer Molchanov [13] for its definition. In Salinetti and Wets [I7] E is
a finite dimensional linear space and V = U(Q4) N Kg and in Plug [I5] £ = R? and V
is equal to the family of all finite unions of compact rectangles with rational endpoints.
Here, as it is the case in Salinetti and Wets [17] the unions (and not the single rectangles)
must be Q-continuity sets. A major advantage of our ”convergence determining class”
V = U(D) is that it is tailor-made for describing epi-convergence in distribution. We
will see that this is so, because in our result the single closed balls are QQ-continuity sets.

A reformulation of Theorem in terms of random closed sets as in reads as
follows: Cy =5 C'in (F,7r) if and only if

lmP,(Co NU #0) =P(CNU #0) for all U € U(D).
Here, by (5) every closed D-ball B satisfies P(C N B # () = P(C' N B # ().
3. WEAK CONVERGENCE OF PROBABILITY MEASURES ON S EQUIPPED
WITH THE EPI-TOPOLOGY

We begin with several rather simple necessary conditions for weak convergence, which
will be of good use later on.

Lemma 3.1. If P, —,, P in (5, 7.), then the following statements hold:

lim inf Po(N7L1 {Ie, < a;}) > P(Nf2y{lc, < a;}), 15

(N {Ir; > a;}) = P07 {IK; > a;}), 16

limasupP o (M {Ik; <aj}) > P(NL{IKk; < a;}),

(M ) = P(NiL )

il > aj} ile, > a;}

(15)

lirr}lian (16)
(17)

limsup P, (18)



24 D. FERGER

for all m e N,Gy,...,G, € G, K1,...,K,, € K and aq,...,a,, € R.

Proof. Since (/L,{la, < a;} € 7, and (. {Ix, > a;} € 7, the first two assertions
and (16) follow from the Portmanteau-Theorem. Similarly, as ﬂ;n 11Uk, <aj} and
ﬂ ,1{IG > a;} both are 7.-closed another application of the Portmanteau-Theorem

yleldb and ( . O
A combination of - leads to a result involving usual limits.
Proposition 3.2. Weak convergence P, —,, P in (S, 7.) entails
lim Po, (ML {1k, < aj}) = P02 {Ik; < a5}), (19)
liénPa(ﬁ;-”:l{IKj >aj}) = P(O’]ﬂ:l{IKj > aj}). (20)

Here, and , respectively, hold for allm € N, aq,...,a,, € Rand K;,...,K,,, € £
satisfying the continuity condition

P(IKj Saj) :P(IKJQ <aj),j: 1,...,m.

Proof. As to the proof of observe that

P(MZi{Igy <aj}) < liminf Po(72{Ixo <aj}) by

< limiana(ﬂ;»nzl{IKj < aj})
since [0 > I; and (—00,a;) C (—00,a;
J
< limsup Pa(Nj2 {1k, < a;})
«
< P(NiLi{lk; <a;}) by

P(N7L{Iko < a;}) see below.

So, the assertion follows, once we have shown the last equation. For this purpose, let
M; = {IK;_J <a;} and N; := {Ix, <a;},j =1,...m. Then M; C Nj for all j, because
Ixo > I, and (—00,a;) € (00, a;]. As a consequence, M := Njey M; COjZ N = N
and thus:

0 < QWN)—-QM)=Q(N QN N (UjL M7)) = Q(UFL, (N N M)

3/

< QUL (N; N M) Z (N; \ M;) ZQ(Nj)—Q(Mj)=O,

where the last equality follows from our assumption. Consequently, Q(N) = Q(M) as
desired. Analogously, by using and one proves . ]

Proposition gives two necessary conditions for weak convergence. Our next result
yields two necessary and suflicient conditions.
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Theorem 3.3. Let D := D(Ey x Q, P o ¢~!). Then the following statements (1) (3)
are equivalent:

(1) Py = P in (S, 7e)
(2) lima Pa(m;'nZI{IE(xj,'r'j) é Tj + Olj}) = P(QTZI{I(E(xj,Tj))O S Tj + O[j}).
(3) limg Po(NJLy{I5,, ) > 15+ a5}) = POV {I 50, 0 > 15+ 5}).

Here, the equalities in (2) and (3), respectively, hold for all m € N,zy,..., 2, €
Eo,m1,...,"m € D,a1,...,0ap, € Q. (Notice that the closed balls B(z;,r;) satisfy the
continuity condition below.)

Proof. The necessity of (2) or (3), respectively, for weak convergence (1) follows from
Proposition because closed balls are compact and r; € D means that Bax.((x}, a;),75)
is a P o ¢~ !-continuity set, which by Lemma in the appendix is equivalent to

P(Ig,, v <15+ a5) = PUpe, 0 <Ti+aj). (21)
As to sufficiency we will see that it is enough to show that
Pyo¢p ' =, Pogp™! on (F(E xR),7-(E x R)). (22)

So, we are dealing with (E x R,d x u) as carrier space instead of (F,d). (The product-
metric is specified in the Appendix below.) Assume that (2) holds. Observe that

UD) = { Udeu((Iz‘,Oﬁ),ﬁ) :m €N, (z;,0;) € BEg xQ,r; € D,i = 1,...,m}.

=1

Let U = J~, B; € U(D), i.e. each B; is equal to the closed ball Byx,((x;, a;),7:),i =
1,...,m.Put Qu := P,o¢ ' and Q := Pogp . The inclusion-exclusion formula yields:

Qa(H(U)) = Qu(UiL (H(B))) =Y (=¥ >~ Qu(Mf_ H(Bi)). (23)
k=1 1<ii <. <ipx<m
For each summand on the right side of equation it follows that:
Qa(Ni_1H(Bi,)) Po(NS_i{f € 5 : epi(f) € H(By,)})
= Pa(Nioy{f € S:epi(f) N B, #0})
Pa(ﬂgzl{fgd(zis ) <7, +a.}) by and .

Consequently by (2),
Qa(NE_ H(By,)) — P(mgzl{lﬁd(xis,ns) <ri, o }) = Q(NE_ H(B.,))

upon noticing and again. With we obtain that Q. (H(U)) — Q(H(U))
for all U € U(D). Thus the weak convergence follows from Theorem Deduce
from that

Pyo¢™' —, Pog™' on the subspace (£,0).
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This yields P, —,, P by the Continuous Mapping Theorem, because
Py =(Pao ¢_1) o (¢_1)_1

and ¢~1: (£,0) — (S, ) is continuous.
Finally, assume that (3) holds. Then

Qa(M(U)) = Qa(M(UL,Bi)) = Qa(NiZ  M(B:))

= Pa(N 1{f € 5 :epi(f) € M(Bi)})

= Po(MZ{f € S:epi(f) N B; =0})

= Pu(NZi{Ip, (4, > i + ai}) by and .

So, weak convergence (22)) follows from Theorem by complementation, which as
shown above results in (1). O

The reformulation of our results in terms of normal integrands is obvious. For in-
stance, a net (Z,) of normal integrands epi-converges in distribution to a normal inte-
grand Z if and only if

Po( _inf  Zo(t) > rit+aii=1,...,m) > P( _inf Z(t) >ri+o,i=1,...,m)
teBa(wi,ri) teBg(wi,ri)

for all m € Nyzy,..., 2 € Eo,71,-..,Tm € D,aq,...,ay, € Q. In this form we can
immediately compare it with the equivalent characterisation of Molchanov’s [I3] Propo-
sition 5.3.20:

Py ( inf Z Li=1,... P( inf Z(¢ Li=1,...

a(tler}(i Ol(t)>tlaz ’ 7m)—> (1€n1 ()>t1a2 ) 7m)

for all m € N, tq,...,t,, € Rand Ki,..., K,, belonging to a separating class of subsets
of E satisfying the condition

P(IKZ- < ti) ZP(IK? < ti).

Examples for separating classes are the family I or the family of all finite unions of closed
balls with center in Ey and positive rational radii. In both cases our countable class
{B4(z,7) : ® € Eg,r € D} is significantly smaller. Similarly, the countable set {r + « :
r € D,a € Q} is a subset of the real line R. Finally, Molchanov only considers sequences
(Zn)nen and not more generally nets (Z,)acs, as we do. In the case of sequences and
E = R? there are further characterisations for epi-convergence in distribution. In their
Theorem 3.14 Salinetti and Wets [I7] show that if (Z,) is almost surely equi-lower
semicontinuous, then epi-convergence in distribution is equivalent to convergence of the
finite-dimensional distributions (fidis). Gersch [I1I], Theorems 2.19 and 2.25, requires
merely stochastically equi-lower semicontinuity and gives a sufficient condition, which
again involve the marginals of the Z,,, but in a more complicated way in comparison to
the convergence of the fidis. However, if in addition the limit process Z is stochastically
uniformly lower semicontinuous, then epi-convergence in distribution and convergence
of the fidis are equivalent. This equivalence also holds for convex Z and Z,,n € N as
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Ferger [6] shows in Theorem 2.12 and Proposition 2.13. In statistical applications the
Skorokhod-space (D(R%), s) plays an important role, because many empirical processes
have trajectories lying in that function space. From Proposition 2.1 of Ferger [9] it
follows that, if Z, 2 Z in (D(R?),s), then Z, B Zin (S(R%),e). Here, s denotes the
Skorokhod-metric and f is the lIsc regularization of a function f € D(R?).

Remark 3.4. Since ¢ : (S,7.) — (£,0) is a homeomorphism, the Continuous Mapping
Theorem yields that a net (Z,) of normal integrands epi-converges in distribution to a

normal integrand Z, Z,, B Zin (S, Te), if and only if the pertaining epi(Z,) converge in
distribution to epi(Z) in the space ExR, i.e. epi(Zy) 3 epi(Z) in (F(ExR), 7r(EXR)).
In the literature so far this was taken as the definition of epi-convergence in distribution.

Remark 3.5. Animportant point in our investigations is that Vaughan’s metric ensures
that every closed bounded set is compact. This is fulfilled if E is a finite-dimensional
normed linear space. Moreover, notice that in normed linear spaces (B(x,7))? = B(z,).
This need not be true more generally in metric spaces even if they are lescH. As an
example consider a countable set E' with at least two elements endowed with the discrete
metric. This space is lescH, but (B(z,1))° = E® = E ¢ {2} = B(z,1). If E is finite,
then (E,d) is even compact and thus in particularly d has the property of Vaughan’s
metric as actually every subset is compact.

4. APPLICATIONS TO SETS OF eOPTIMAL SOLUTIONS OF NORMAL
INTEGRANDS

For f € S(E) and € > 0 let

A(f,e):={te E: f(t) <Ig(f)+e}

be the set of all e-optimal solutions of f. This set is closed, because A(f,¢e) = {f < a}
with « := Ig(f) + € € [—00,0]. Now, if Ig(f) € R, then a € R and A(f,e) = {f <
a} € F by lower semicontinuity of f. If Ig(f) = oo, then A(f,e) = {f < o0} =FE € F.
Finally, in case that Ig(f) = —oo then A(f,e) = {f = —oo} = ,enif < —n} € F
again by lower semicontinuity of f and since F is closed under intersection. So, the
assignment (f,€) — A(f,€) defines a map

A:SxRy — F. (24)

For € = 0 one obtains A(f,0) = {t € E : f(t) = Ig(f)} =Argmin(f), the set of all
minimizing points of the function f.
A very nice property of epi-convergence is formulated in our next result.

Proposition 4.1. Let (f,)nen be a sequence of lsc functions, which epi-converges to
some f € S, ie f, = fin (S,7.). Moreover, assume (€,),eny > 0 is a sequence of
non-negative numbers such that limsup,, ,. €, < e. Then

PK-limsup A(fn, €n) C A(f, €). (25)

Here, PK-lim sup denotes the Painlevé — Kuratowski outer limit of a sequence of sets.
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Proof. Lett¢ € PK-limsup,,_, A(fn,€,). By definition of the outer limit there exists a
subsequence (n;);en of the natural numbers and points t,,; € A(fp;,€,,) witht,,, — t as
j — oo. Assume that t ¢ A(f,¢). Then there exists some s € F such that f(t) > f(s)+e,
because otherwise f(t) < f(s) + € for all s € E, whence Ig(f) > f(t) — € and thus
f(t) < Ig(f) + € in contradiction to t ¢ A(f,e). It follows from the characteristion
of epi-convergence, confer Theorem 5.3.2 (ii) in Molchanov [I3], that there exists some
sequence (s,) such that s, — s and f(s,) — f(s). Since t,,; € A(fn,,¢€n,), we have

that fo, (tn,;) < IE(fn;) + €n; < fn,(Sn;) + €, and so
fnj (snj) > f’ﬂj (tnj) — €n; vVjeN. (26)
Conclude that

f@t) > f(s)+e

= falen) e

liminf f,, (s,,) +¢€
j—o0

2 hjniggf(fnj (tnj) - enj) +e by

> liminf f,, (tn,) + liminf(—e,,) + €

= liminf f,, (t,;) — limsupe,; +¢€
J—oo j—o0

> liminf f, (t,,) — limsupe, +¢€
Jj—oo n—00

> liminf f,, (t,;) by assumption on (e,)
j—oo

> f@),

where the last inequality follows from Theorem 5.3.2 (ii) in Molchanov [13] since (f5, ) en
as a subsequence epi-converges to f as well. So, we arrive at a contradiction, which
finishes our proof. O

Let 7 :={[0,7) : 0 < r € R} U{D, Ry} be the left-order topology on Ry := [0,00).
Then the assumption limsup,, . €, < € is equivalent to €, — € in (R4, 7). If e = 0,
then €, — 0 in the natural topology 7, on R since all ¢,, are non-negative and therefore
liminf,, ,~ €, > 0. For this special case we obtain Proposition 2.9 of Attouch [I], who

however considers more generally arbitrary topological spaces (E,G).

Next, let 7, be the upper Fell topology, which is generated by the family S,rp :=
{M(K) : K € K}. In the literature 7, is also known under the name miss topology,
confer Beer [2]. Since S,y C S, the upper Fell topology is weaker than the Fell topology.
In Lemma 2.2, Vogel [22] shows in case E = R? that a sequence (F,),en C F of closed
sets in F converges to some F' € F in the upper Fell topology, i.e.

F, — F in (F,7,r) if and only if PK-limsup F,, C F. (27)

n— oo
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This remains valid more generally for (E,G) lescH, confer Proposition 2.18 (b) in
Ferger [5]. Our next result yields continuity of the map

A:SxRy — F.
Corollary 4.2. Let 7. x T be the product-topology on S x R;. Then
A:(SxRy,7e xT)— (F,7ur) is continuous. (28)
In particularly,

A:(SXRy,7e X Tp) = (F,7ur) is continuous. (29)

Proof. By Corollary 2.79 of Attouch [I] the space (S, 7.) is second-countable, which
also holds for (R4, T) as one easily verifies. Thus the product (S xRy, 7. x T) is second-
countable as well and in particularly, it is first-countable. By Theorem 7.1.3 in Singh [I8]
it suffices to show that A is sequentially-continuous. So, assume that (fp,€,) = (f, €) in
(S xRy, 7. x T). This is equivalent to f, — f in (S,7.) and €, — e in (R4, 7). But the
latter in turn means that limsup,,_,., €, < €. Therefore, the assertion in follows
from Proposition in combination with the equivalence . Since 7e X Ty, D Te X T,
the second assertion follows from the first one. O

Let Z be a normal integrand and e a random variable with values in R4 both de-
fined on some measurable space (€, .A). A first useful application of Corollary yields
measurability of the random set A(Z, €). In the proof below we will use the following no-
tation: Given a topological space (X, Q) the pertaining Borel-o-algebra o(Q) is denoted
by B(X).

Corollary 4.3. If Z and e are as above, then A(Z, ¢) is a random closed set.

Proof. Tt follows from that A is B(S x R;) — B, measurable, where B, :=
o(Tur). But B,r = Bp, because B = o(S,r) by Lemma 2.1.1 in Schneider and Weil
[19) and Sur C Tur C 7p. Since (S x Ry, 7. X Tp) is second-countable, it follows that
the Borel-o-algebra B(S x R;) = B(S) ® B(R,). Infer that A is B(S) ® B(Ry) — Bp
measurable. Deduce from our assumption that the product map (Z,¢) : (Q,4) —
(S xR4,B(S) @ B(Ry4)) is measurable, whence the assertion follows upon noticing that
A(Z,e) = Ao (Z,e) is a composition of measurable maps. |

A further utility of Corollary [£.2]is that it enables us to apply the Continuous Mapping
Theorem (CMT) for random variables in topological spaces, confer Proposition 8.4.16
in Génssler and Stute [I0]. The random variables Z, e and Z,, €, occuring in our results
below are defined on (Q, A, P) and (24, Aa, Pa), respectively.

Theorem 4.4. Let (Z,) and (e,) be nets of normal integrands and non-negative ran-
dom variables, respectively. Assume that

(Zas€a) D (Z,€) in (S xRy, 7o x T). (30)
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Then A(Z,, €q) S A(Z,€) in (F, Tyr). This is the same as

limsupPo( (] {w € Qa1 A(Za(w), ea(w)) N K # 0})
@ Kek*
< P( () {weQ: A(Z(w),e(w)) N K #0}) (31)

Kek~

for every collection K* C K of compact sets in F.

Proof. Assumption and the CMT applied to A in Corollary gives the first
assertion of the theorem. The second one follows from Proposition 2.1 of Ferger [7]. O

A legitimate question is what are sufficient conditions for the validity of ? We
provide a few answers in:

Remark 4.5. (1) Assume that there is a component-wise convergence, i.e.
D, . D .
Zo = Z in (S,7.) and €, = € in (R4, Ty). (32)
If € is almost surely constant, then
(Zas€a) B (Z,€) in (S xRy, 7 x Tr). (33)

This follows from Slutsky’s Theorem, confer Proposition 8.6.4 in Génssler and Stute

[10]. Now, implies , because 7. X T, D Te X T.

(2) Suppose that Z, and ¢, are P,-independent for each «. If component-wise con-
vergence holds, where Z and € are P-independent, then again holds by Theorem
2.8 in Billingsley [3]. As we know this is enough for . A special case for this is when
the net (e,) is deterministic and convergent with (deterministic) limit e.

(3) It should be mentioned that Slutsky’s Theorem and Theorem 2.8 in Billingsley
[3] are formulated only for sequences. However, by using Proposition 8.4.9 in Génssler
and Stute [I0] one can see that their proofs can easily be transferred to nets .

The question arises as to the requirements under which Fell-convergence in distribu-
tion is obtained. The answer involves the family Fo; := {0} U {{z} : © € E} of sets
with at most one element.

Theorem 4.6. Assume that holds with ¢ = 0. If for every n > 0 there exists a
compact K C E such that

lin}linf}P’a({w €Ny :0# A(Zy(w),é0(w) CK})>1—1

and if P{w € Q : Z(w) € Fp1}) = 1, i.e. Z has at most one minimizing point almost
surely, then

A(Zy, €0) S Argmin(Z) in (F,7r).
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Proof. First, notice that by Lemma 4.6 of Ferger [7] the set F¢ 1 is closed in (F, 7r)
and consequently {Z € Fg 1} € A, the domain of P. It follows from Theorem that
A(Zy, €q) S Argmin(Z) in (F, 7,r). Thus, an application of Theorem 2.9 of Ferger [7]
yields the assertion. a

For Argmin-sets the assumption simplifies significantly, because here ¢, = 0 for
all o € J, which is a special case of the special case in Remark (2).

Corollary 4.7. Suppose that Z, B Zin (S, 7e), where Z has at most one minimizing
point almost surely. If for every n > 0 there exists a compact K C E such that

liminf P, ({w € Q4 : 0 # Argmin(Z,(w)) C K}) > 1—1,

then
Argmin(Z,) 3 Argmin(Z) in (F,7r).

In applications one is often more interested in single e-optimal solutions. So, for each
a€ Jlet &y (o, Aa,Po) = (E, B(E)) be a measurable map. Such a random variable
in F is called measurable selection of A(Zy,€y) if €4 € A(Zy,€n) Py-almost-surely.
Since A(Zq, €4) is a random closed set by Corollary it follows from the Fundamental
Selection Theorem, confer Molchanov [I3] on p. 77, that measurable selections exist.

Theorem 4.8. Assume that holds and that for every n > 0 there exists a compact
K C FE with
Iminf Py ({w € Qn : €a(w) EK}) > 1—1.

Then
limsupPp({w € Q4 : a(w) € F}) <T(F) for all closed sets F in E, (34)

where T : B(E) — [0, 1] is the capacity functional of A(Z,€), i.e.
T(B)=P(A(Z,e)Nn B #0) for all Borel-sets B € B(E).

If e = 0 and Argmin(Z) C {&} P-almost surely for some random variable £ on (2, A, P)
with values in F, then

¢ B¢ in (E,Q).

Proof. A(Zu,€a) z A(Z,e) in (F,1yr) by Theorem Now, the assertion follows
from Corollary 3.7 of Ferger [1]. O

Remark 4.9. Note that looks exactly like the corresponding characterisation in
the Portmanteau theorem, except for the fact that T is generally not a probability
measure, but only a Choquet-capacity. On the other hand, T uniquely determines the
distribution of the random closed set A(Z,¢). It is therefore reasonable to say that the
points &, converge in distribution to the set A(Z,¢).

Remark 4.10. If we choose F := E € F in (34), then we obtain that T'(E) = 1. But
T(E) = P(A(Z,¢€) # ), whence in particularly Argmin(Z) = A(Z,0) is actually equal
to {£} with probability one.



32 D. FERGER

5. APPENDIX

Recall that d is Vaughan’s metric on E. Let u be the usual euclidian distance on R. We
endow the product E x R with the product-metric d x u defined by d x u((x, ), (y, 8)) :=
max{d(z,y), |a — B|} for points (z,«) and (y,S) in E x R. It is well-known that this
metric (among many others) induces the product-topology on E x R. The reason for
our special choice lies in that

Baxu((z,0),7) = By(z,7) X (¢ — a0 + 1), (35)
so open balls are open rectangles. Similarly,

Basu((x,a),r) = Ba(z,7) X [ — 1,0 + 7). (36)
In particularly, Bgx.((x,a),r) is compact.

Lemma 5.1. Let P be a probability measure on (S, B.) and ¢ be the homeomorphism
. If Q := Po¢!, then for each (z,a) € E x R and 7 > 0 the pertaining closed ball
Bixu((z,@),r) is a Q-continuity set, if and only if

P(Igd(x,r) <r+ Oé) = P(I(Ed,(a:,r))o <r+4+ a).

Proof. We know that every closed ball By, ((z,a),r) is compact, whence by it
is a @)-continuity set if and only if

P({f € S:epi(f) € H(Ba(z,r) x [a —r,a+71])})
= P{feS:epi(f) € H((Balz,r) x [a — 7,00 +1])N)}). (37)

Now,
epi(f) N (Ba(z,7) x [a —ra+7]) #0 < Ig,en(f) S +a (38)

To see this, let (y,t) € E x R such that t > f(y),y € Ba(x,r) and t € [a — r,a + 7).
Then I, (, . (f) < f(y) <t < r+a. Conversely, assume that Iy, . (f) <7+ a. Since
By(z,r) is compact and f is Isc, there exists some z € Bq(z,r) with f(2) = I, . (f)-
Consequently, (z,7 + «) € epi(f). Moreover, (z,7 + «) € Bg(x,r) X [0 —r,a+ 1] as can
be seen immediately. Thus, we have shown (38). Further,

epi(f) N (Ba(z,7) x [a—r,a+7)° 40 < 1B, @ (f) <T+ o (39)

For the proof of necessity =, first observe that (By(x,r) x [@ —7,a+7])° = (Ba(z,7))° x
(a —r,a+7). Let (y,t) € Ex R with t > f(y),y € (Ba(z,7))? and t € (a — r,a + 7).
Then Iz, ;o (f) < fly) St <r+o

As to sufficiency <, put i := I(Ed(a:,r))f)(f)~ We know that i < o + r. Then there
exists some u € («—r, a+7r) with ¢ < u, because otherwise i > a+r—¢ for all € € (0, 2r)
and taking the limit € | 0 yields that i > o + r, a contradiction. Therefore, there exists
some v € (By(z,7))° such that f(v) < u, whence

(v,u) € epi(f) N (Ba(w,7))° x (@ —r,a+7)
= epi(f) N (Ba(z,r) x [a —r,a+7])" #0
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as desired.
From (37) in combination with and the assertion follows. O

(Received July 22, 2025)
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