Kybernetika 61 no. 6, 872-894, 2025

New constructions of nullnorms on bounded trellises

Dong-Xue Jiang, Ya-Ming Wang and Hua-Wen LiuDOI: 10.14736/kyb-2025-6-0872

Abstract:

In this paper, we focus on the construction of nullnorms on bounded trellises. The features of the element that acts as the annihilator of a nullnorm are discussed and the relevant results show that the element acting as the annihilator must not be included in any cycle. Drawing upon this revelation, we propose some new methods for constructing nullnorms on bounded trellises, which are different from those given by Xiu et al. Additionally, some illustrative examples are provided to facilitate a more comprehensive understanding.

Keywords:

nullnorm, trellis, order-preserving mapping, t-(co)norm

Classification:

03B52, 03E72, 03G10

References:

  1. G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publications, Rhode Island 1973.   CrossRef
  2. G. D. Çaylı and F. Karaçal: Idempotent nullnorms on bounded lattices. Inf. Sci. 425 (2018), 154-163.   DOI:10.1016/j.ins.2017.10.003
  3. G. D. Çaylı: Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746.   DOI:10.1016/j.amc.2019.124746
  4. G. D. Çaylı: Nullnorms on bounded lattices derived from t-norms and t-conorms. Inf. Sci. 512 (2020), 1134-1154.   DOI:10.1016/j.ins.2019.10.059
  5. G. D. Çaylı: Some results about nullnorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 105-131.   DOI:10.1016/j.fss.2019.03.010
  6. G. D. Çaylı: Generating nullnorms on some special classes of bounded lattices via closure and interior operators. Inf. Sci. 552 (2021), 118-141.   DOI:10.1016/j.ins.2020.11.016
  7. T. Calvo, B. De Baets and J. Fodor: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.   DOI:10.1016/S0165-0114(99)00125-6
  8. B. De Baets, H. De Meyer, B. De Schuymer and S. Jenei: Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welf. 26 (2006), 217-238.   DOI:10.1007/s00355-006-0093-3
  9. B. De Baets, K. De Loof and H. De Meyer: A frequentist view on cycle-transitivity of reciprocal relations. Fuzzy Sets Syst. 281 (2015), 198-218.   DOI:10.1016/j.fss.2015.06.020
  10. J. Donald and J. Arrigo: Non-associative modular lattices. Arch. Math. 22 (1971), 18-23.   DOI:10.1007/BF01222532
  11. J. Drewniak, P. Drygaś and E. Rak: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657.   DOI:10.1016/j.fss.2007.09.015
  12. P. Drygaś: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145 (2004), 455-461.   DOI:10.1016/S0165-0114(03)00259-8
  13. D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121.   DOI:10.1016/0020-0255(85)90027-1
  14. D. Dubois and H. Prade: Fundamentals of Fuzzy Sets. Kluwer Academic Publishers, Boston, 2000.   CrossRef
  15. Ü. Ertuğrul: Construction of nullnorms on bounded lattices and an equivalence relation on nullnorms. Fuzzy Sets Syst. 334 (2018), 94-109.   DOI:10.1016/j.fss.2017.07.020
  16. E. Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Math. 13 (1970), 151-164.   CrossRef
  17. E. Fried and G. Grätzer: Some examples of weakly associative lattices. Colloq. Math. 27 (1973), 215-221.   DOI:10.4064/CM-27-2-215-221
  18. E. Fried and V. T. Sós: Weakly associative lattices and projective planes. Algebra Univers. 5 (1975), 114-119.   DOI:10.1007/BF02485240
  19. K. Gladstien: A characterization of complete trellises of finite length. Algebra Univers. 3 (1973), 341-344.   DOI:10.1007/BF02945138
  20. P. Hájek, T. Havránek and R. Jirou\u{s}ek: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton, 1992.   CrossRef
  21. W. Homenda, A. Jastrzebska and W. Pedrycz: Multicriteria decision making inspired by human cognitive processes. Appl. Math. Comput. 290 (2016), 392-411.   DOI:10.1016/j.amc.2016.05.041
  22. X. J. Hua: New constructions of nullnorms on bounded lattices. Fuzzy Sets Syst. 439 (2022), 126-141.   DOI:10.1016/j.fss.2021.09.010
  23. M. A. İnce, F. Karaçal and R. Mesiar: Medians and nullnorms on bounded lattices. Fuzzy Sets Syst. 289 (2016), 74-81.   DOI:10.1016/j.fss.2015.05.015
  24. B. Kerr, M. A. Riley, M. W. Feldman and B. J. M. Bohannan: Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418 (2002), 171-174.   DOI:10.1038/nature00823
  25. F. Karaçal, M. A. İnce and R. Mesiar: Nullnorms on bounded lattice. Inf. Sci. 325 (2015), 227-236.   DOI:10.1016/j.ins.2015.06.052
  26. Y. Kong and B. Zhao: Uninorms on bounded trellises. Fuzzy Sets Syst. 481 (2024), 108898.   DOI:10.1016/j.fss.2024.108898
  27. G. Li, H. W. Liu and Y. Su: On the conditional distributivity of nullnorms over uninorms. Inf. Sci. 317 (2015), 157-169.   DOI:10.1016/j.ins.2015.04.040
  28. M. Mas, M. Monserrat, D. Ruiz and J. Torrens: Migrative uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets Syst. 26 (2015), 20-32.   DOI:10.1016/j.fss.2014.05.012
  29. F. Qin and B. Zhao: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Syst. 155 (2005), 446-458.   DOI:10.1016/j.fss.2005.04.010
  30. J. S. Qiao and B. Q. Hu: On the migrativity of uninorms and nullnorms over overlap and grouping functions. Fuzzy Sets Syst. 346 (2018), 1-54.   DOI:10.1016/j.fss.2017.11.012
  31. H. Skala: Trellis theory. Algebra Univers. 1 (1971), 218-233.   DOI:10.1007/BF02944982
  32. X. R. Sun and H. W. Liu: Representation of nullnorms on bounded lattices. Inf. Sci. 539 (2020), 269-276.   DOI:10.1016/j.ins.2020.06.013
  33. Z. D. Wang, Y. Ouyang, H. P. Zhang and B. De Baets: A note on the representation theorem for nullnorms on bounded lattices. Fuzzy Sets Syst. 472 (2023), 108680.   DOI:10.1016/j.fss.2023.108680
  34. Z. Y. Xiu and X. Zheng: Nullnorms on bounded trellises. arXiv preprint arXiv: 2408.09321, 2024.   DOI:10.48550/arXiv.2408.09321
  35. H. P. Zhang, Z. D. Wang, Y. Ouyang and B. De Baets: A representation of nullnorms on a bounded lattice in terms of beam operations. Fuzzy Sets Syst. 427 (2022), 149-160.   DOI:10.1016/j.fss.2020.11.004
  36. H. P. Zhang, Y. Ouyang, Z. D. Wang and B. De Baets: A characterization of idempotent nullnorms on bounded lattices. Inf. Sci. 586 (2022), 676-687.   DOI:10.1016/j.ins.2021.12.004
  37. H. P. Zhang, Y. Ouyang, Z. D. Wang and B. De Baets: A complete representation theorem for nullnorms on bounded lattices with ample illustrations. Fuzzy Sets Syst. 439 (2022), 157-169.   DOI:10.1016/j.fss.2021.08.012
  38. L. Zedam and B. De Baets: Triangular norms on bounded trellises. Fuzzy Sets Syst. 462 (2023), 108468.   DOI:10.1016/j.fss.2023.01.003
  39. W. W. Zong, Y. Su and H. W. Liu: Migrative property for nullnorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 749-759.   DOI:10.1142/S021848851450038X