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NEW CONSTRUCTIONS OF NULLNORMS
ON BOUNDED TRELLISES

DonG-XUE JIANG, YA-MING WANG AND HUA-WEN Liu

In this paper, we focus on the construction of nullnorms on bounded trellises. The features
of the element that acts as the annihilator of a nullnorm are discussed and the relevant results
show that the element acting as the annihilator must not be included in any cycle. Drawing
upon this revelation, we propose some new methods for constructing nullnorms on bounded
trellises, which are different from those given by Xiu et al. Additionally, some illustrative
examples are provided to facilitate a more comprehensive understanding.
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1. INTRODUCTION

Nullnorms, as a generalization of t-norms and t-conorms, emerged from Calvo et al.’s
study of the Frank equation for uninorms [7]. They possess a unique absorbing element
that can exist anywhere in the unit interval, called the annihilator. The nullnorms have
important theoretical research value due to the fact that they are composed of a t-norm
and a t-conorm, and they also have a wide range of applications, such as fuzzy logic,
decision making, expert systems, neural networks and so on [I3] 14} 20, 2I]. For the
above reasons, there has been a lot of research about nullnorms on the unit interval
[11 121 27, 28], 29], 30, [39].

Since incomparability is very common in practical applications, in recent years, schol-
ars prefer to study aggregation operators on more general structures, especially on
bounded lattices [I]. Initially, Karagal et al. [25] extended nullnorms to an arbitrary
bounded lattice and proved the existence of nullnorms on arbitrary bounded lattices.
Subsequently, a series of studies about nullnorms on bounded lattices have sprung up,
mainly focusing on the construction and representation of nullnorms [2l, [3, 4, [5 6] 15|
22, 23, 32 [33, [35], 136, [37].

As we know, associativity plays a key role in the development of lattice theory. In
1971, Skala [31] introduced a generalization of lattices, namely trellises (weakly asso-
ciative lattices). This generalization allows for most theorems of lattice theory to hold
without assuming associativity. It is undeniable that the existence of transitivity does
bring great convenience to mathematical reasoning. However, it is actually shown that
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the absence of transitivity is also very important in some phenomena. For example,
in ecosystems, non-transitive communities allow competing species to coexist, which
helps maintain biodiversity [24]. The classic non-transitive system involves a tripar-
tite community of competing species that exhibit a relationship analogous to the game
rock-paper-scissors, where rock dominates scissors, scissors outcompete paper, and pa-
per prevails over rock. Therefore, the study of non-transitive relations is very necessary.
Furthermore, in the study of random variables [8, 9], the absence of transitivity gives
rise to a cycle-transitivity framework. The lack of transitivity has two main effects: the
presence of cycles and incomparability. Specifically, if X is better than Y, Y is better
than Z, and Z is better than X, this leads to a cycle, or X is better than Y, Y is better
than Z, but X and Z are not comparable, thus creating incomparability.

Due to the aforementioned factors, scholars have initiated investigations into struc-
tures featuring non-transitive relations, such as pseudo-ordered sets and trellises. The
trellises are also known as weakly associative lattices, tournament lattices or non-associa-
tive lattices in some literature [10, 16} 17, 18]. Although the absence of transitivity of the
relation does not affect the existence of the meets and the joins, it results in the meets
and the joins no longer satisfying associativity. Recently, Zedam et al. [38] extended
the concept of a t-norm to bounded pseudo-ordered sets and in particular on bounded
trellises and gave some examples. As mentioned above, due to the lack of transitiv-
ity, the meet operation on a proper bounded trellis is no longer a t-norm, and it has
been shown that there may be multiple maximal t-norms or no maximal t-norms on a
bounded trellis. They also provided a method for constructing t-norms on a bounded
A-semi-trellis based on interior operators. Inspired by this, Kong et al. [26] introduced
the notion of uninorms on bounded trellises. They found that only those elements that
are middle-transitive on a bounded trellis can act as the neutral element of a uninorm,
and provided several methods for constructing uninorms on bounded trellises by means
of interior operators and closure operators, respectively, based on the assumption that
the neutral element is left-transitive, right-transitive, or not in any cycles. Xiu et al. [34]
introduced the notion of nullnorms to bounded trellises, they found that the element
acting as an annihilator must be middle-transitive, and gave the corresponding con-
struction methods. In this paper, we focus on the construction of nullnorms on bounded
trellises. In particular, we assert that the annihilator of a nullnorm on a bounded trellis
cannot exist in any cycle, and present several new methods for constructing a nullnorm
on a bounded trellis by means of the order-preserving mappings and t-(co)norms. In
addition, some illustrative examples for new construction methods are provided.

The remaining sections of this paper are structured as follows. In Section [2| we
recall some essential definitions and results about trellises which will be utilized in this
paper. In Section[3] we review the basic properties of nullnorms on bounded trellises and
further explore the necessary conditions for the element that acts as the annihilator of a
nullnorm, then a series of new methods to construct nullnorms on bounded trellises and
some illustrative examples are presented. Finally, we give the conclusion in Section [

2. PRELIMINARIES

In this section, we recall some essential definitions and results about trellises which will
be used in this paper, more details can be found in [T'7} [19] 3T].



874 D.-X. JIANG, Y.-M. WANG, AND H.-W. LIU

Definition 2.1. (Skala [3I]) Let X be a nonempty set. A pseudo-order on X is a
binary relation < on X such that, for all z,y € X,

(i) = Qz (reflexivity);
(ii) = 9y and y <z implies = y (antisymmetry).

A nonempty set X is called a pseudo-ordered set (psoset, for short) if it is equipped
with a pseudo-order <, we denote it by P = (X, ).

Let P = (X, <) be a psoset and z,y € X. If z <y and x # y, then we write x < y;
if # <y does not hold, then we write z € y. If # 4 y and y ¢ z, we say that = and
y are incomparable, in which case we denote z || y. The set of all elements in X that
are incomparable to x is denoted by I,. We write x < y if there exists a finite sequence
(21, ..., 2n) of elements from X such that  <x; < ... <z, <y. Take a subset ¥ of X
and a,b € Y, we write a <y b if there exists a finite sequence (y1,...,y,) of elements
from Y such that a Jy; <... Jy, <b. If for all a,b € Y, both a <y b and b <y «a hold,
then Y is called a cycle. Obviously, any singleton Y = {z} is a trivial cycle. Owing to
the antisymmetry of <, any non-trivial cycle contains at least three elements.

Similarly to partially ordered sets (posets, for short), the representation of a finite
pseudo-ordered set can be achieved through a Hasse diagram with the following distinc-
tion: if x and y are not related, while in a poset this would be implied by transitivity,
then x and y are joined by a dashed edge. If x < y and y < x, then x and y are joined
by a directed edge going from y to x.

The concepts of the maximal/minimal element, the greatest/smallest element, the
upper/lower bound, the smallest upper bound (supremum), the greatest lower bound
(infimum) for psosets are defined in the same way as the corresponding concepts for
posets. Take a subset A of a psoset P = (X, <), the antisymmetry of the pseudo-order
implies that if A has an supremum (resp. infimum), then it is unique, and is denoted
by VV A (resp. A A). If A= {a,b}, then we write a V b (called join) instead of \/{a, b}
and a A b (called meet) instead of A{a,b}.

Definition 2.2. (Kong and Zhao [26]) A bounded psoset is a psoset that has a smallest
element denoted by 0 and a greatest element denoted by 1, i.e. 0 Jx <1, for all x € X.
We denote it by P = (X, <,0,1).

Definition 2.3. (Gladstien [I9]) A A-semi-trellis (resp. V-semi-trellis) is a psoset P =
(X, Q) such that = Ay (resp. x V y) exists for all x,y € X. A trellis is a psoset that
is both a A-semi-trellis and a V-semi-trellis and we denote it by P = (X, <, A, V). If a
trellis is not a lattice, then we call it a proper trellis. Clearly, <y is defined as Ay = x
(or z Vy =y) for a trellis. A bounded A-semi-trellis is denoted by P = (X, <, A,0,1).
A bounded V-semi-trellis is denoted by P = (X, <,V,0,1). A bounded trellis is denoted
by P = (X,<,A,V,0,1).

In this paper, we only consider the bounded trellis containing at least three elements.

Definition 2.4. (Kong and Zhao [26]) Let P = (X, <, A,V,0,1) be a bounded trellis,
a,b € X,a<b. A subinterval [a,b] of X is defined as [a,b] = {z € X|a<x <b}. Similarly,
(a,b] = {zr € X|la<x <b}, [a,b) = {z € X|a <z b} and (a,b) = {z € X|a <z < b}.
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Definition 2.5. (Skala [31]) Let P = (X, Q) be a psoset. An element b € X is said to
be:

(i) right-transitive, if b <z <y implies b <y, for all z,y € X;

)
(ii) left-transitive, if <y <b implies = < b, for all z,y € X;
(iii) middle-transitive, if  <b <y implies z <y, for all z,y € X;
)

transitive, if it is right-transitive, left-transitive and middle-transitive.

(iv
In this paper, the set of right-transitive elements of X, the set of left-transitive ele-

ments of X and the set of middle-transitive elements of X are denoted by X 7", X!t Xxmir
respectively.

Definition 2.6. (Zedam and Baets [38]) Let P = (X, <,0,1) be a bounded psoset. A
binary operation H on P is called:

(i) commutative, if H(x,y) = H(y,z), for all z,y € X;
(i) associative, if H(H (x,y),z) = H(x, H(y, 2)), for all z,y,z € X;
(iii) right-increasing, if y <z implies H(x,y) < H(z, 2), for all z,y,z € X
(iv) left-increasing, if y < z implies H (y,x) < H(z, z), for all z,y,z € X;
(v) increasing, if x Qy and z <t implies H(z,2z) < H(y, t), for all x,y,z2,t € X.

Definition 2.7. (Zedam and Baets [38]) Let P = (X,<,0,1) be a bounded psoset. A
binary operation 7 : X2 — X is called a triangular norm (t-norm, for short) on P if it is
commutative, associative, increasing and has 1 as the neutral element, i.e. T(z,1) = z,
for all x € X.

Definition 2.8. (Zedam and Baets [38]) Let P = (X,<,0,1) be a bounded psoset.
A binary operation S : X? — X is called a triangular conorm (t-conorm, for short)
on P if it is commutative, associative, increasing and has 0 as the neutral element, i.e.

S(z,0) ==z, for all z € X.
We introduce the concept of order-preserving mapping on a psoset similar to a poset.

Definition 2.9. Let P, = (X, <) and P, = (Y, <) be psosets. A mapping f: X =Y
is said to be order-preserving if x <y implies f(x) < f(y) for any z,y € X.

3. NULLNORMS ON BOUNDED TRELLISES

In this section, we recall the concept and basic properties of a nullnorm on a bounded
trellis, explore the necessary conditions for the element to act as the annihilator, and
present several new methods for constructing nullnorms on bounded trellises.

For convenience, we denote I" = {x € I,Jx < a}, I} = {z € Lja < 2}, I} =
{x € IJx ¢ (IZUIL)}, I} = {x € I,]x < a and z is joined to a by a dashed edge },
I? = {z € I,Ja £ z and a is joined to x by a dashed edge }, I2 = {z € I,| z and a are
not joined by a dashed edge }, and K = {z € X™"| x does not belong to any cycle }.
Obviously, I} C I I2CTL I C I3 I, =TT UL UT: = T' UT2 U I3,
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Example 3.1. Let P, = (X, <, A,V,0,1) be a bounded trellis given by Hasse diagram in
Figure where X = {0,a,b,¢,d,e, f,g,h,1}. Thenb S dand d<b,b 4 d, a € g, {b,c,d}
is a cycle, [0,a] = {0,b,c,a}, [a,1] = {a, f,h,1}, IT = {d}, I} = {0}, Il = I? = {g},
Ir = {e}, [g’ ={d,e}.

Fig. 1: Hasse diagram of the bounded trellis P;.

Definition 3.2. (Xiu and Zheng [34]) Let P = (X, <, A,V,0,1) be a bounded trellis. A
binary operation V : X? — X is called a nullnorm on P if it is commutative, associative,
increasing and there exists an element a € X, called the annihilator of V, such that
V(0,2) = x for any x € [0,a] and V(1,z) = x for any z € [a, 1].

It is clear that the nullnorm degenerates to the t-norm when a = 0 and to the
t-conorm when a = 1. In this paper, we only consider the case a € X\{0,1}.

3.1. Basic properties of nullnorms on bounded trellises

Proposition 3.3. (Xiu and Zheng [34]) Let P = (X, <,A,V,0,1) be a bounded trel-
lis, a € X\{0,1} and V be a nullnorm on P with annihilator a. Then the following
statements hold:

(i) Vlj0,q)2 is a t-conorm on [0, a].

(ii) Va,1j2 is & t-norm on [a, 1].
(iii) V(z,y) = a for all (z,y) € [0,a] x [a, 1].

(iv) a QV(z,y) for all (z,y) € [a,1]2 U ([a, 1] x I,) U (I, x [a, 1]).
(v) V(z,y) <a for all (z,y) € [0,a]2U ([0,a] x I,) U (I, x [0,al).
(vi) V(z,y) <y for all (z,y) € X x [a,1].

(vii) V(z,y) <z for all (x,y) € [a,1] x X.
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z,y) for all (z,y) € [0,a] x X.

N
A
= =

)

) z,y) for all (z,y) € X x [0,a].
(x) zVy<V(z,y) for all (z,y) € [0,a]%.

)

)

)

(xi) V(z,y) Sz Ay for all (z,y) € [a,1]2.
(xii) (zxAa)V (yAa) DV (z,y) for all (z,y) € ([0,a] x I,) U (I, x [0,a]) UI2.
(xiii) V(z,y) < (zVa)A(yVa) for all (z,y) € ([a,1] X I,) U (I x [a,1]) U T2

Proposition 3.4. (Xiu and Zheng [34]) Let P = (X, <, A, V,0,1) be a bounded trellis,
a € X\{0,1} and V be a nullnorm on P with annihilator a.

(i) If z € I}, then V(z,y) = a for all y € [a, 1].
(ii) If z € I2, then V(z,y) = a for all y € [0, a].

Remark 3.5. In fact, Proposition (i) is valid for the case where x € I” and Propo-
sition (ii) is valid for the case where x € I'. Thus, we have the following proposition.

Proposition 3.6. Let P = (X, <, A,V,0,1) be a bounded trellis, a € X\{0,1} and V
be a nullnorm on P with annihilator a.

(i) If x € I, then V(x,y) = a for all y € [a,1].
(ii) If z € I, then V(x,y) = a for all y € [0, a].

Proof. The proof is similar to the proof of Proposition 3.2 in [34]. O

Proposition 3.7. (Xiu and Zheng [34]) Let P = (X, <, A, V,0,1) be a bounded trellis,
a € X\{0,1} and V be a nullnorm on P with annihilator a. Then a € X™".

Remark 3.8. (Kong and Zhao [26]) Let P = (X, <,A,V,0,1) be a bounded trellis. If
a € X™7 then x <y for all z € (0,a),y € (a,1).

Proposition 3.9. Let P = (X,<,A,V,0,1) be a bounded trellis, a € X™"\{0,1}
and V be a nullnorm on P with annihilator a. Then a is not in any cycle in P, i.e.
a € K\{0,1}.

Proof. Suppose that a <z <z <Qx3 <1+ <ITp_o<Tp_1 T, <a, where z; € X,i =
1,2,...,n. Clearly, z; ¢ {0,1},71 € (a,1),x, € (0,a). Since a € X™", according to
Remark [3.8] we have x5 ¢ (0,a),z,—1 ¢ (a,1) and further n > 3.

Now, we prove n # 3. Suppose that a <z <ze <Qx3 <a, then x5 ¢ (0,a) U (a,1), we
only need to talk about the case where x5 € I,. Since a € X™", then x3 < x;. Since
xg € IL, then we have V(0,z2) = a and V (x3,22) = a by Proposition (ii). According
to the increasing property of V', we can get

a=V(0,22) AV (1,22) <V (1,23) = a,
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therefore, V(1,22) = a. Also we have
a = V($2,]J3) d V(1,1‘1) < V(l,xg) =a,

then V(1,21) = a. However, by the definition of the nullnorm, we have V(1,21) = 21,
it contradicts with a5 € I,. Thus n>3.

Now, we talk about the case where n > 4. From what has been discussed above, we
have x5 € (a,1) U Iy, -1 ¢ (a,1). If 25 € I,, then x5 € I7, and by Proposition [3.6] (i),
we have V(zq,1) = a. By the increasing property of V, we can get

x1 =V(zr1,1) IV (xg,1) = aq,

it contradicts with z1 € (a,1). Thus z2 € (a,1). Because of z2 < x3, we have x3 €
(a,1) U I,. Similarly, it can be proved that x; € (a,1),7 = 3,4,...,n — 1, it contradicts
with 2,1 ¢ (a,1). To sum up, a is not in any cycle in P. O

Remark 3.10. According to the Proposition we can obtain that if there is a null-
norm with annihilator a on a bounded trellis P = (X, <, A,V,0,1) , then I7 N Ifl =0,
A={zell|3ye (0,a)UITUI:st. x<ay} =0, B={x €I Iy e (0,a) UI’ st.
x<dy}=0,and C ={z € (a,1)| Iy € (0,a) UTT UT} st. z <y} =0.

3.2. Some methods for constructing nullnorms on bounded trellises

Now, we present some new methods for constructing nullnorms on bounded trellises.

Theorem 3.11. Let P = (X, <,A,V,0,1) be a bounded trellis, a € K\{0,1}, T be
a t-norm on [a,1], S be a t-conorm on [0,a], f : X — [a,1] be an order-preserving
mapping satisfying f(x) = x for all € [a,1], g : X — [0,a] be an order-preserving
mapping satisfying g(z) = z for all « € [0,a]. Then the binary operation V defined by
is a nullnorm with annihilator a on P.

S(g(x),9(y)), (2,y) € ([0,a] UIL)?,
Viz,y) = { T(f(=), f®), (z.9)€ ([a,JUIL UIL)? (1)
a, otherwise.

Proof. It is obvious that V is commutative and has an annihilator a. Thus we only
need to prove the increasing property and associativity of V.
Let z,y,z,t € X such that <y, z <t, we verify V(z,z) IV (y,t).

1. z€[0,a]UI],z €[0,a] UIL, then V(z,z) = S(g(z),9(2)) <a.

1.1. fy € [0,a] UIL,t € [0,a] UTL, then V(x,z) = S(g(x),g(2)) I S(g9(y),g(t)) =
V(y,t).

1.2. ify € [0,a]UILt € (a,JUTLUT ory € (a,1JUIL U T} t €[0,a] UI", then
V(z,2) = S(g(x),9(2)) da=V(y,t).

1.3. If y,t € (a,1JUTIL U T, then V(x,2) = S(g(x),9(2)) <a I T(f(y), f(t)) =
V(y,t), further V(z,2) <V (y,t) due to a € X™,
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I3 S(g(), 9(y)) a S(g(x),9(y))
ILurr
) a T(f(x), f(y)) a
S(g(z),9(y)) a S(g(x),9(v))
0 a L rtur Iy

Fig. 2: The nullnorm V on the bounded trellis P in Theorem

2. z€[0,a)UI", 2z € (a,1JUIL, then t € (a,1]U I} and V(x,z2) = a.

2.1. Ify € [0,a) U I, then V(x, z) = a = V(y,t).

2.2. Ify € (a, JUIL U T, then V(z,2) = a T (f(y), f(t)) = V(y,1).
3. x€[0,a)UIT,z€ I} thent € (a,1]UIL U and V(z,2) = a.

3.1. If y € [0,a) U T, then V(x, z) = a = V(y,t).

3.2. Ify € (a, 1|UTL U T, then V(z,2) = a I T(f(y), f(t)) = V(y,1).
4. z € (a,1]UTL, 2 € [0,a] UI", the proof is similar to the case 2.

5. x,2z € (a, 1JUIL, then y,t € (a,1]UI! and V(z,2) = T(f(z), f(2))IT(f(y), f(t)) =
V(y,t).

6. 2 € (a,1JUTl,2 € I}, then y € (a,1JUILt € (a,1]U T U I and V(z,2) =
T(f(x), f(2) QT(f(y), f(t) = V(y, ).

7. x €I,z €0,a] UIL, the proof is similar to the case 3.
8. z €I’ 2 € (a,1]UI., the proof is similar to the case 6.

9.,z € I}, then y,t € (a, U I, UT; and V(x,2) = T(f(x), f(2)) ST (f(y), f()) =
V(y,t).

In summary, V is increasing. Now, we verify the associativity of V. Let z,y,2z € X.
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1. 2 €[0,a]UIL,y €[0,a] UI], then V(z,y) = S(g9(z),9(y)) < a.

S(g
S(g(y),9(z)) < a and we have that

):9(2)) = 5(S(g(2), 9(y)), 9(2))
79(5(9( ):9(2)))) = V(z,V(y, 2))-

V(V(z,y),2) = a=V(z,V(y,2)).
2. 2 €[0,a]UITy € (a,1]UILUI, then V(x,y) = a.

1.1. If z € [0,a) U I}, then V(y

Y, 2)
V(V(z,y),2) = S(g(S(g(x),g(y))
= S(9(x),S(9(y),9(2))) = S(g(z)
)=

S(
1.2. If z € (a, 1JUTL U T, then V(y, z

2.1. If z € [0,a] U I}, then V(y,2) = a and V(V(z,y),2) = a = V(z,V(y, 2)).

2.2. If z € (a, 1] UTIL U T, then a QA T(f(y), f(2)) = V(y,2) and V(V(2,9), 2)
a=V(z,V(y,z)).

3. 2 € (a,JUILU I}, y€[0,a) UIL, then V(z,y) = a.

3.1. If z € [0,a] U I, then V(y,z) = S(g(y),9(z)) <a and V(V(x,y),2) = a
Vi, V(y 2))-

3.2. If z € (a, 1JUTL U I, then V(y,2) = a and V(V(z,y),2) = a = V (2, V(y, 2)).
4. @,y € (a,]UIL UI;, then a AT(f(2), f(y) = V(a,y).
)

41. If z € [0,a] UI], then V(y,z) = a and V(V(z,y),2) = a = V(ac V(y, 2)).
4.2. If z € (a,1]UTL U I, then a I T(f (

fQ)s f
V(V(z,y),2) = T(f(T(f(x), f(y))), [(2)) =
=T(f(x), T(f(y), [(2))) = T(f (), F(T(f(y )7f( )

Theorem 3.12. Let P = (X, <,A,V,0,1) be a bounded trellis, a € K\{0,1}, T be
a t-norm on [a,1], S be a t-conorm on [0,a], f : X — [a,1] be an order-preserving
mapping satisfying f(xz) = x for all z € [a,1], g : X — [0,a] be an order-preserving
mapping satisfying g(z) = x for all « € [0,a]. Then the binary operation V defined by
is a nullnorm with annihilator a on P.

S(g(x),9(y), (z,y) e ((0,a] UI; UL,
V(z,y) = S T(f(2), f(v), (x,9) € ([a,1]UT})?, (2)

a, otherwise.

Proof. It is obvious that V is commutative and has an annihilator a. Thus we only
need to prove the increasing property and associativity of V.
Let z,y,z,t € X such that <y, z <t, we verify V(z,z) IV (y,t).

1. 2 €[0,a]UIl, z €[0,a) UI], then V(x, z) = S(g9(x),9(2)) <a.

1.1. y € [0,a) UIT UIXt € [0,a] UIL UIY, then V(z,z) = S(g9(x),9(2)) <
S(9(y),9() = V(y,1).
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I, U151 S(g(z), 9(y)) a S(g(x),9(y))
I
1 a T(f(x), f(y)) a
S(g(x),9(y)) a S(g(x),9(y))
0 a 1 ITUTI:

Fig. 3: The nullnorm V on the bounded trellis P in Theorem

1.2. fy € [0,aUITUI t € (a,1JUI or y € (a,1]UIL, t €[0,a] UIT UI, then
Viz,z) = S(g(x),9(2)) Ja =V(y,1).
L3. If y,t € (a, 1] UL, then V(z,2) = S(g(2), 9(2)) LaIT(f(y), () = V(y,1),
further V(z,z) 9V (y,t) due to a € X™".
2. z€[0,a)UI", 2 € (a,1]UIL, then t € (a,1] U I} and V(x,2) = a.

2.1. Ify € [0,a) UIL UIY, then V(x,z) = Vy,t).
2.2. Ify € (a,1JUIL, then V(x,2) = a < ( (y ),f(t)) V(y,t).

3. x€[0,a)UIL,z€ I} thent € (a,1]UIL UI} and V(z,2)

(
z)

| |
/—\
/—\
8
~
)
—~
IS
~—
~
A
IS

3.1. Ifye€[0,a)UITUT tE (a,1]UIL, then V(z,2) <a

32. If y € [0,a) U I UIXt € IF, then we have V(x, ) S(g(x),g(z)) <
S(9(y),9()) = V(y,1).

33. Ify € (a, JU It € (a,1JU I, then V(x,2) Qa AT (f(y), f(t)) = V(y,t),
further we have V(z,z) <V (y,t) due to a € X™".

34. Ify € (a,1JUIL t € I¥, then V(x,2) <a = V(y,t).

| |
A
H—
~

4. x € (a,1]UTl, 2z € [0,a] UI", the proof is similar to the case 2.

5. z,2 € (a, 1JUIL, then y,t € (a,1JUIl and V (z,2) = T(f(z), f(2))IT(f(y), f(t)) =
Vy,t).
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6. z € (a,JUIL,z € I* then y € (a,1]UI. ¢t € (a,1JUIL U I} and V(z,2) = a.
6.1. If t € (a, 1] U L., then V(z,2) = a < T(f(y), f(t)) = V(y,t).
6.2. Ift € I}, then V(z,2) = a =V (y,t).

7. x €I} z€0,a] UI], the proof is similar to the case 3.

8. z €I’ 2 € (a,1]UI., the proof is similar to the case 6.

9. z,z € I*, then y,t € (a,1]UIL UT* and V(z,2) = S(g9(x),9(z)) < a.

9.1. Ify,t € (a, 1JUIL, then V(z,2) Qa<dT(f(y), f(t)) = V(y,t), further we have
V(z,z) <V(y,t) due to a € X™".

92. fy e (a,JUIL,t eI ory € I te (a,1]UI, then V(z,2) Ja=V(y,t).

9.3. If y,t € I, then V(z,2) = S(g(), 9(2)) 2 5(g(y), 9(t)) = V(y,1).

In summary, V' is increasing. Now, we verify the associativity of V. Let z,y,2z € X.
1. x,y € [0,a) UIT UI* then V(x,y) = S(g(x),9(y)) <a.

1.1. If z € [0,a] U I7 U I}, then V(y, 2) = S(g(y), 9(%)) < a and we have that

V(V(z,y),2) = S(g(S(g(z),9(¥))),9(2)) = S(
= S(g(x),S(9(y), 9(2))) = S(g(x), 9(5(9(y), 9(2)))
1.2. If z € (a,1] U IL, then V(y, 2) = a and V(V(z,y)
)=

2. x €[0,a]UITUILy € (a,1]UIL, then V(z,y

2.1. If z € [0,a]UILUIY, then V(y,z) = aand V(V(z,y),2) = a = V(x,V(y,2)).
2.2. If z € (a, 1] U IL, then a QT(f(y), f(2)) = V(y,2) and V(V(z,y),2) = a =
Vi, V(y,z)).
3. 2 € (a,|UIL,y€[0,a] UIL UI, then V(x,y) = a.
3.1. If z € [0,a] U I U I}, then V(y,z) = S(9(y),9(2)) <a and V(V(z,y),2) =
a=V(x,V(y,z)).
3.2. If 2 € (a,1JU IL, then V(y,2) = a and V(V(z,y),2) = a = V(x,V(y, 2)).
4. 2,y € (a,1JU I, then a ST(f(2), f(y)) = V(z,y).
4.1. If z € [0,a]UIJ UI}, then V(y,z) = a and V(V(z,y),2) = a =V (z,V(y, 2)).
)

4.2. If z € (a, 1] U IL, then a S T(f(y), f(2)) = V(y, z) and we have that
(y

V(V(z,y),2) = T(F(T(f(x), [(y))), [(2)) = T(T(f(2), [(y)), F(2))
=T(f(x), T(f(y), [(2))) = T(f(x), F(T(f(y), [(2)))) = V(2 V(y,2)).
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Theorem 3.13. Let P = (X, <,A,V,0,1) be a bounded trellis, a € K\{0,1}, T be
a t-norm on [a, 1], S be a t-conorm on [0,a|, f : X — [a,1] be an order-preserving
mapping satisfying f(xz) = z for all z € [a,1], g : X — [0,a] be an order-preserving
mapping satisfying g(z) = x for all « € [0,a]. Then the binary operation V defined by
(3) is a nullnorm with annihilator a on P.

S(g(x),9(y)), (z,y) € ([0,a] UI})?,

V(z,y) = T(f(2), f(¥), (x,9) € ([a,1]UT})?, (3)
a, otherwise.
I; a
I3 |1S(9(), 9(v)) a S(g(z),9(y))
Ik
Y rg@ren| a
S(g(z),9(y)) a S(g(z),9(y))
0 a 1 Ir I

Fig. 4: The nullnorm V on the bounded trellis P in Theorem

Proof. It is obvious that V is commutative and has an annihilator a. Thus we only
need to prove the increasing property and associativity of V.
Let z,y, z,t € X such that z Qy, 2z <t, we verify V(z,2z) <V (y,t).

1. z€[0,a]UIl,z €[0,a] UIL, then V(z,z) = S(g(z),9(2)) <a.
L1 1ty € [0,] UTE € [0,a] U T, then V(z, 2) = S(g(x), 9(2)) < S(g(y), (1)) =
V(y,t).
1.2. fy € [0,a]UILt € (a,JUTI, or y € (a,1JUIL ¢t € [0,a] UTL, then V(z,2) =
S(g(x), 9(2)) da=V(y,1t).

L.3. If y,t € (a, ] UL, then V(z,2) = S(g(2). 9(2)) La A T(f(y), f()) = V(y.1),
further V(z, 2) < V(y,t) due to a € X™*".
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14. fy e Iforte I then V(z,2z) = S(g(x),9(2)) <a=V(y,t).
r€[0,a)UIl, 2z € (a,1JUIL, then t € (a,1]U I} and V(z,2) = a.

2.1. fy € [0,a) UILUIL, then V(x,2) =a=V(y,t).

2.2. Ify € (a,1JUIL, then V(x,2) = a QA T(f(y), f(t)) = V(y,1).

r€[0,a] Ul z€ I}, thent € (a,1JUIL U T and V(z,2) = a.

31. Ifye[0,a)UITUT tE (a,1]UILUIE, then V(z,2) = a= V(y,t).

32. Ify € (a,JUILt € (a,1]UT, then V(z,2) = aIT(f(y), f(t)) = V(y,1).
3.3. Ify e (a,1JUILt € I*, then V(z,2) = a = V(y,t).

.z € (a,1]]UTL, 2 € [0,a] U I, the proof is similar to the case 2.
2,2 € (a, 1JUIL, then y, ¢ € (a,1)ULL and V(w, 2) = T(f(x), £()) ST(f(y), f(2)) =

V(y,t).

.z €(a,JUIl,z €I then y € (a,1]U I and V(x,2) = a IV (y,t).
.x el ze0,al UIT, the proof is similar to the case 3.
. x €I,z € (a,1] U I', the proof is similar to the case 6.

. x,z €I* then y,t € (a,JUTL UT* and V(x,2) = a <V (y,t).

In summary, V is increasing. Now, we verify the associativity of V.
Let z,y,z € X. It is easy to verify associativity if one of the elements z, y, z belongs

to I,

1.

2.

3.

4.

then we only need to consider the other cases.

x €[0,al UIr y € [0,al UIL, then V(z,y) = S(g9(z),g(y)) <a.

1.1. If z € [0,a] U I7, then V(y,2z) = S(g(y),9(z)) < a, and we can obtain
V( (x.9). ) = S(9(S(9(x), 9(1))). 9(2)) = S(S(g(2). 9(»)). 9(2))
S(g(x),5(g ( ):9(2))) = 5(9(x),9(5(9(y), 9(2)))) = V(z,V(y, 2)).
1.2. If z € (a,1] U I}, then V(y,2) = a and V(V(x,9),2) =a = V(z,V(y, 2))

x €[0,a]UIT y € (a,1]UI, then V(z,y) = a.

2.1. If z € [0,a) U I, then V(y,2z) =a and V(V(z,y),2) = a = V(x,V(y, 2)).

2.2. If z € (a, 1] U IL, then a QT(f(y), f(2)) = V(y,2) and V(V(z,y),2) = a =
Vi, V(y, 2))-

x € (a,1]UILy €[0,a] UT, then V(z,y) = a.

3.1. If z € [0,a] U I%, then V(y,z) = S(9(y),9(2)) <a and V(V(z,y),2) = a =
V(z,V(y, 2)).

3.2. If z € (a,1JU L, then V(y,2) = a and V(V(z,y),2) = a = V(x,V(y, 2)).

r € (a,1JUIL,y € (a,1]UTL, then a AT(f(z), f(y)) = V(x,y).
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4.1. If z € [0,a] U I}, then V(y,2) = a and V(V(x,y),
4.2. If z € (a, 1] U I}, then a < T(f(y), f(2)) = V(y, ), and we have that
(f

V(Vi(z,y),2) = T(f(T(f(x), f(y))), [(2)) = T(T(f(2), f(y)), f(2))
=T(f(=), T(f(y), [(2))) = T(f (), [(T(f (), [(2)) = V(z,V(y, 2))-

y),2) =a=V(z,V(y,2)).

O

Example 3.14. Let P, = (X, <, A, V,0,1) be a bounded trellis given by Hasse diagram
in Figure where X = {0,a,b,¢,d,e, h,i,7,k,l,m,1}. Clearly, a € K\{0,1}, [0,a] =
{0,b,d,a},[a,1] = {a,i,5,0,1},I7 = {c,e}, I\ = {k}, I} = {m,h}. We can define the
t-conorms S7 and Sy on [0,a] given by Table [1] and Table [2| respectively, and define
the t-norms T3, T» and T3 on [a, 1] given by Tables and respectively. Given the
order-preserving mappings fi, f2 and g1, as shown in Tables [} [7] and [§] respectively.

(i) With the help of the t-conorm Sy, the t-norm 7} and the order-preserving mappings
f1 and g1, we can construct a nullnorm V; with annihilator a on P, by Theorem
3.11] as shown in Table [9]

(ii) With the help of the t-conorm Sy, the t-norm 75 and the order-preserving mappings
f2 and g1, we can construct a nullnorm V5 with annihilator @ on P, by Theorem

3.12] as shown in Table

(iii) With the help of the t-conorm S7, the t-norm T3 and the order-preserving mappings
f2 and g1, we can construct a nullnorm V3 with annihilator a on P, by Theorem
3.13] as shown in Table

Fig. 5: Hasse diagram of the bounded trellis Ps.
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Si1 10 b d a So |0 b d a

010 b d a 0|10 b d a

b |b b d a b |lb d d a

d|d d d a d|d d d a

ala a a a ala a a a

Tab. 1: The t-conorm S;. Tab. 2: The t-conorm Ss.

Ty la ¢ 35 1 1 Tola ¢ 5 1 1 T3 |a ¢ 35 1 1
ala a a a a ala a a a a ala a a a a
i la 1 i 1 i i la 1 i 1 i i la 1 i i 1
Jla © j 3 ] Jla © i i j Jla © j 3 J
Il la ¢ 5 1 1 Il la © 1 1 1 Il la 1 3 3 1
1 |a ¢ 5 1 1 1 |a 4« 57 [ 1 1 |a ¢+ 5 1 1
Tab. 3: The t-norm T7. Tab. 4: The t-norm T5. Tab. 5: The t-norm T3.

x 0 b d a i+ 5 1 1 ¢ e k m h

filw)|la a a a i j 1 1 a a 1 35 j

Tab. 6: The order-preserving mapping fi.
x 0 b d a v+ 5 1 1 ¢ e k m h
fol@)|la a a a 4 j 1 1 a a j a a
Tab. 7: The order-preserving mapping fs.
T 0 b d a i j |1 c e k m h
gi(zx) |0 b d a a a a a d d a b a

Tab. 8: The order-preserving mapping g .

Remark 3.15. In Theorem [3.11] although we require that the domain of the order-
preserving mappings f and g be X, in fact, the values of f on [0,a) U I’ and g on
(a,1] U IL U I} do not affect the construction of the nullnorm, so we can restrict the
domains of f and g to [a, 1] UI! UI* and [0,a] U I, respectively. Similarly, in Theorem
we can restrict the domains of f and g to [a, 1]UI} and [0,a] U7 UI?, respectively.
In Theorem we can restrict the domains of f and g to [a,1] U I} and [0,a] U IT,
respectively.

In Theorem if IL =117 =0, f and g are given by f(x) = x for all z € [a, 1] and
g(x) = x for all x € [0, a], respectively, then we can draw the following corollary.

Corollary 3.16. Let P = (X,<,A,V,0,1) be a bounded trellis satisfying I7 U I = (),
a € K\{0,1}, T be a t-norm on [a,1], S be a t-conorm on [0,a]. Then the binary
operation V defined by is a nullnorm with annihilator a on P:
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Tab. 11: The nullnorm V3 in Example [3.14] (iii).
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S(z,y), (z,y) €0,a]?,
V(JZ, y) = T(l’, y)a (Lﬂ, y) € [av ”23 (4)
a, otherwise.

In fact, a bounded lattice is a special bounded trellis. Let a € X\{0,1} and P =
(X, <,A,V,0,1) be a bounded trellis. If P is a bounded lattice, then the mappings
s:X — [a,1] and t : X — [0,a] given by s(x) = z Va and t(z) = = A a are order-
preserving mappings satisfying s(z) = z for all z € [a, 1] and t(z) = « for all x € [0, a]. If
P is a proper bounded trellis, then s and ¢ are usually not order-preserving mappings on
P (see Examples and , however, if we restrict the domain of s to [a, 1]UTL U T}
or [a,1]UT!, then s is an order-preserving mapping satisfying s(x) = z for all = € [a, 1]
when P satisfies certain conditions, as shown in the following Proposition[3.19] Similarly,
if we restrict the domain of ¢ to [0,a]UI] U} or [0,a]UI’, then ¢ is an order-preserving
mapping satisfying ¢(x) = x for all z € [0,a] when P satisfies certain conditions, as
shown in the following Proposition [3.20)

Example 3.17. Consider the bounded trellis P; = (X, <, A,V,0,1) given by the Hasse
diagram in Figure [1} where X = {0,a,b,¢,d, e, f,g,h,1}.

(i) Define the mapping s; : X — [¢,1] as s1(z) =z V¢ for all z € X. Since d <1 b and
s1(d)y=dVe=d s c=bVc=si(b), then s; is not an order-preserving mapping.

(ii) Define the mapping ¢1 : X — [0,0] as t1(x) = x A b for all x € X. Since ¢ < d and

ti(c) =cAb=bgdd=dANb=t(d), then t; is not an order-preserving mapping.

Example 3.18. Consider the bounded trellis P, = (X, <, A,V,0,1) given by the Hasse
diagram in Figure |5, where X = {0,a,b,¢,d, e, h,,j,k,1,m,1}.

(i) Define the mapping sy : X — [d, 1] as sa(z) =2V d for all z € X. Since e < ¢ and
sa(e) =eVd=efd=cVd=s(c), then sy is not an order-preserving mapping.

(ii) Define the mapping t2 : X — [0,¢] as t2(x) = 2 A c for all z € X. Since d < e and
tao(d) =dANc=cde=eAc=ty(e), then ty is not an order-preserving mapping.
For convenience, we denote
Ll ={z eI’ 3ye (0,a) UI st. x <y},
L2 ={x€(0,a)UIl| Iyl st. y<uz},
Hl={zelI'Uli|3yel’st zay},
H2={zel|Jyel UIlst yaz},
Ol={zell|3yec(a)Ull st y<a},
O2={zxec(a,H)UI| Fy el st. x<yl,
Rl={z el Ul 3ycl;st y<x},
RE={xel}|Iyecl Uulst zay}.
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Proposition 3.19. Let P = (X, <, A,V,0,1) be a bounded trellis, a € X\{0,1}, then
the following items hold:

1] given by s(z) = z V a is an order-

(1) The mapping s : ([a,1] U IL U I¥) — [a,
= z for all € [a,1] if one of the following

preserving mapping satisfying s(z)
items is satisfied:

(i) Ol u R} C xmir,

(i) O2UR2 C X7,
(iii) (a,1) C X",

(2) The mapping s : ([a, 1] U I.) — [a,1] given by s(z) = = V a is an order-preserving
mapping satisfying s(z) = z for all € [a,1] if one of the following items is
satisfied:

() 0L € X,
(i) OF € X"
(iii) (a,1) C X",

Proof.

(1) Let =,y € [a,1] U I, U I such that <y, we verify s(z) =z Va<dyVa=s(y).
We only prove the case (i), the cases (ii) and (iii) can be proved similarly.
1) If z,y € [a, 1], then s(z) = <y = s(y);
2) Ifx € [a,1],y € I., since x<y<yVaand O C X™" then s(z) = x<dyVa =
s(y);
3) Ifz e ILUT, y€[a,1], since x <y and a Dy, then s(x) =2 Vady = s(y);
4) Ifxel,yel, sincex<y<yVa,a<dyVaand O C X™" then we have
r<yVaand s(z) =zVadyVa=s(y);
5) Ifz eI, ycl, sincex<y<yVa,a<lyVaand R. C X™" then we have
zr<yVaand s(z)=zVadyVa=s(y);
6) If v,y € I}, sincex Ay <y Va,adyVaand R} C X™" then x Iy Va and
s(xy=xzVadyVa=sy).
(2) The proof is similarly to (1).
|

Proposition 3.20. Let P = (X, <,A,V,0,1) be a bounded trellis, a € X\{0,1}, then
the following items hold:

0,a] given by t(z) = x A a is an order-

(1) The mapping ¢ : ([0,a] UTII UTIF) — |
= z for all € [0,a] if one of the following

preserving mapping satisfying t(x)
items is satisfied:
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(i) LLUH} C xmir;
(i) L2UH2 C X!,
(iii) (0,a) C X",
(2) The mapping ¢ : ([0,a] UI?) — [0,a] given by t(z) = x A a is an order-preserving
mapping satisfying t(x) = x for all x € [0, a] if one of the following items is satisfied:
(i) Ly € XM
(i) L7 € X"
(ii) (0,a) C X"*".

Proof.
(1) Let z,y € [0,a] UIL UI} such that  Qy, we verify t(z) =z Aa<yAa = t(y). We

only prove the case (ii), the cases (i) and (iii) can be proved similarly.
1) If 2,y € [0,a], then t(z) = 2 <y = t(y);
2) If x € [0,a],y € IL UI}, since z <y and = < a, then t(z) =2 Iy A
3) Ifz €I, y€[0,a],sincezAa<dz<yand L2 C X" then t(z) =z
t(y);
4) frxel,yell sincexNadz<dy,x Aa<aand L2 C X" then we have
zAa<yand t(z) =z ANa<yAa=1t(y);

5) Ifx eIl yc I sincexAa<z<y,xAa<aand H2 C X" then we have
zAadyand t(z) =z ANa<yAa=t(y);

6) Ifx,y € I, since tAa<dzdy,x Aa<a and Hg C Xl”, then we have x Aa Jdy
and t(z) =z Aa <y Aa=t(y).
(2) The proof is similarly to (1).
|
From Remark and Propositions and in Theorem let f and g be

given by f(x) =z Va forall z € [a,1]UIL U I} and g(x) =z Aa for all z € [0,a] U IT,
respectively, then we can draw the following corollary.

Corollary 3.21. Let P = (X, <,A,V,0,1) be a bounded trellis, a € K\{0,1}, T be a
t-norm on [a, 1], S be a t-conorm on [0, a]. Then the binary operation V' defined by
is a nullnorm with annihilator a on P if the following items are satisfied:

(i) LY € X™r or L2 C X" or (0,a) C X"'";

(i) OLURL C X™" or O2UR2 C X" or (a,1) C X",

S(xAa,yna), (z,y) € ([0,a]UI)?,
Viz,y) = T(xVa,yVva), (z,y)¢€ (a,1]UIlUI;)?, (5)
a, otherwise.
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In Theorem [3.12} let f and g be given by f(z) = x V a for all z € [a,1] U I} and
g(x) = x Aaforal x € [0,a] UIT UI respectively, then we can draw the following
corollary.

Corollary 3.22. Let P = (X, <,A,V,0,1) be a bounded trellis, a« € K\{0,1}, T be a
t-norm on [a, 1], S be a t-conorm on [0, a]. Then the binary operation V defined by (6]
is a nullnorm with annihilator a on P if the following items are satisfied:

(i) LLUH} C X™" or L2ZUH? C X! or (0,a) C X"'";

(ii) O} C X™" or O2 C X" or (a,1) C X!,

S(xAa,yNa), (x,y) € ([0,aUT;UIL)?,
V(z,y) =< T(zVa,yVa), (z,y)€ ([a,1]UI.)? (6)
a, otherwise.

In Theorem [3.13} let f and g be given by f(z) = x V a for all z € [a,1] U I} and
g(x) =x Aafor all z € [0,a]UI", respectively, then we can draw the following corollary.

Corollary 3.23. Let P = (X, <,A,V,0,1) be a bounded trellis, a € K\{0,1}, T be a
t-norm on [a, 1], S be a t-conorm on [0, a]. Then the binary operation V defined by
is a nullnorm with annihilator a on P if the following items are satisfied:

(i) LI C X™" or L2 C X" or (0,a) C X",

(ii) O € X™t or 02 C X"*" or (a,1) C X',

S(xAa,yna), (z,y) € ([0,a] UT;)?,
Vi(z,y) = T(xVa,yVa), (z,y)€ ([a,1]UIL})> (7)
a, otherwise.

Remark 3.24. We now discuss the relationships between our methods and those in
[34].

(i) In Corollary if I” = I!, then the resulting nullnorm coincides with the one
determined by Theorem 3.1 in [34].

(ii) In Corollary if I! = I2, then the resulting nullnorm coincides with the one
determined by Theorem 3.2 in [34].

(iii) In Corollary if I = ( and I7 = I}, then the resulting nullnorm coincides
with the one determined by Theorem 3.1 in [34].

(iv) In Corollary if I* = () and I’ = I2, then the resulting nullnorm coincides with
the one determined by Theorem 3.2 in [34].
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4. CONCLUSION

In this paper, we further discuss the characteristics of the element acting as the anni-
hilator of a nullnorm on a bounded trellis. Based on t-(co)norms and order-preserving
mappings, we propose a series of new methods for constructing nullnorms on bounded
trellises and present some examples to illustrate. In addition, we illustrate that in some
special cases, the nullnorms obtained by our methods coincide with those obtained by
Xiu et al. In the future, we will further consider other methods for constructing null-
norms on bounded trellises, and it would be better if the assumptions could be relaxed.
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