Kybernetika 61 no. 6, 855-871, 2025

New methods to construct uninorms by extending uninorms with closure operators and t-superconorms

Jun Qi and Zhen-Yu XiuDOI: 10.14736/kyb-2025-6-0855

Abstract:

In this paper, we provide new methods to construct uninorms by extending given uninorms on a subinterval of a bounded lattice with closure operators (resp. interior operators) and t-superconorms (resp. t-subnorms). Meanwhile, these methods for uninorms generalize some known methods for uninorms in the literature. An example is also provided to show our method.

Keywords:

uninorms, bounded lattices, closure operators, t-superconorms

Classification:

03B52, 06B20, 03E72

References:

  1. E. Aşcı and R. Mesiar: On the construction of uninorms on bounded lattices. Fuzzy Sets Systems 408 (2021), 65-85.   DOI:10.1016/j.fss.2020.04.015
  2. G. Birkhoff: Lattice Theory. Amer. Math. Soc., Rhode Island, 1967.   CrossRef
  3. S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, September 11-13, Subotica, Serbia, 2014, 61-66.   CrossRef
  4. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inform. Sci. 367 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.044
  5. G. D. Çaylı, Ü. Ertuğrul and F. Karaçal: Some further construction methods for uninorms on bounded lattices. Int. J. General Systems 52 (2023), 4, 414-442.   DOI:10.1080/03081079.2023.2174470
  6. G. D. Çaylı: New construction approaches of uninorms on bounded lattices. Int. J. General Systems 50 (2021), 139-158.   DOI:10.1080/03081079.2020.1853002
  7. G. D. Çaylı: An alternative construction of uninorms on bounded lattices. Int. J. General Systems 52 (2023), 5, 574-596.   DOI:10.1080/03081079.2023.2187200
  8. G. D. Çaylı: Constructing uninorms on bounded lattices through closure and interior operators. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 32 (2024), 1, 109-129.   DOI:10.1142/S0218488524500071
  9. C. J. Everett: Closure operators and Galois theory in lattices. Trans. Amer. Math. Soc. 55 (1944), 514-525.   DOI:10.1090/S0002-9947-1944-0009967-X
  10. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inform. Sci. 181 (2011), 23-43.   DOI:10.1016/j.ins.2010.08.043
  11. P. Hájek: Combining Functions for Certainty Degrees in Consulting Systems. Int. J. Man-Machine Studies 22 (1985), 1, 59-76.   DOI:10.1016/S0020-7373(85)80077-3
  12. P. Hájek, T. Havránek and R. Jiroušek: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton 1992.   CrossRef
  13. X. J. Hua, H. P. Zhang and Y. Ouyang: Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382.   DOI:10.14736/kyb-2021-2-0372
  14. P. He and X. P. Wang: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.   DOI:10.1016/j.ijar.2021.05.004
  15. X. J. Hua and W. Ji: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Systems 427 (2022), 109-131.   DOI:10.1016/j.fss.2021.02.009
  16. W. Ji: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Systems 403 (2021), 38-55.   DOI:10.1016/j.fss.2020.03.012
  17. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.006
  18. F. Karaçal, Ü. Ertuğrul and R. Mesiar: Characterization of uninorms on bounded lattices. Fuzzy Sets Systems 308 (2017), 54-71.   DOI:10.1016/j.fss.2016.06.015
  19. E. P. Klement, R. Mesiar and E. Pap: A Universal Integral As Common Frame for Choquet and Sugeno Integral. IEEE Trans. Fuzzy Systems 18 (2010), 178-187.   DOI:10.1109/TFUZZ.2010.2040489
  20. K. Menger: Statistical metrics. In: Proc. National Academy of Sciences of the United States of America 8 (1942), 535-537.   DOI:10.1073/pnas.28.12.535
  21. G. Metcalfe and F. Montagna: Substructural Fuzzy Logics. J. Symbolic Logic 72 (2007), 3, 834-864.   DOI:10.2178/jsl/1191333845
  22. Y. Ouyang and H. P. Zhang: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Systems 395 (2020), 93-106.   DOI:10.1016/j.fss.2019.06.009
  23. E. S. Palmeira and B. C. Bedregal: Extension of fuzzy logic operators defined on bounded lattices via retractions. Comput. Math. Appl. 63 (2012), 1026-1038.   DOI:10.1016/j.camwa.2011.07.074
  24. S. Saminger: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Systems 157 (2006), 1403-1416.   DOI:10.1016/j.fss.2006.01.004
  25. M. Takács: Uninorm-Based Models for FLC Systems. J. Intell. Fuzzy Systems 19 (2008), 1, 65-73.   DOI:10.3233/IFS-2008-0402
  26. Z. Y. Xiu and X. Zheng: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Systems 465 (2023), 108535.   DOI:10.1016/j.fss.2023.108535
  27. Z. Y. Xiu and X. Zheng: A new approach to construct uninorms via uninorms on bounded lattices. Kybernetika 60 (2024), 2, 125-149.   DOI:10.14736/kyb-2024-2-0125
  28. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  29. B. Zhao and T. Wu: Some further results about uninorms on bounded lattices. Int. J. Approx. Reasoning 130 (2021), 22-49.   DOI:10.1016/j.ijar.2020.12.011
  30. H. P. Zhang, M. Wu, Z. Wang, Y. Ouyang and B. De Baets: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Systems 423 (2021), 107-121.   DOI:10.1016/j.fss.2020.09.019