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NEW METHODS TO CONSTRUCT UNINORMS
BY EXTENDING UNINORMS WITH CLOSURE
OPERATORS AND T-SUPERCONORMS

Jun Qi and Zhen-Yu Xiu

In this paper, we provide new methods to construct uninorms by extending given uninorms
on a subinterval of a bounded lattice with closure operators (resp. interior operators) and
t-superconorms (resp. t-subnorms). Meanwhile, these methods for uninorms generalize some
known methods for uninorms in the literature. An example is also provided to show our method.
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1. INTRODUCTION

In 1996, uninorms were introduced by Yager and Rybalov [28] on the unit interval,
as a generalization of triangular norms (t-norms, for short) and triangular conorms (t-
conorms, for short) [20], allowing a neutral element e to lie anywhere in [0, 1] rather than
at 1 or 0. Since then, uninorms have been widely used in several fields, such as fuzzy
set theory, fuzzy system modeling, expert systems, neural networks, fuzzy logic and so
on (see, e.g., [10, 11, 12, 19, 21, 25]).

In 2015, the concept of uninorms was generalized from the unit interval [0, 1] to
bounded lattices by Karaçal and Mesiar [17]. And some construction methods for uni-
norms on bounded lattices were introduced by Karaçal and Mesiar. Since then, a number
of construction methods have been introduced in the literature. The constructions of
uninorms are usually based on the following tools, such as t-norms (resp. t-conorms)
(see, e.g., [1, 3, 4, 17, 18]), t-subnorms (resp. t-superconorms) (see, e.g., [15, 16, 30]),
closure operators (resp. interior operators) (see, e.g., [6, 7, 8, 13, 22, 29]), additive
generators [14] and uninorms (see, e.g., [5, 26]).

Especially, in 2023, the new methods to construct uninorms by extending given uni-
norms on bounded lattices were introduced by Çaylı [5], and Xiu and Zheng [26], respec-
tively. Then, in [27], Xiu and Zheng also provided new methods to construct uninorms
on bounded lattices by using a given uninorm only or a given uninorm with a t-norm
(t-conorm). In this paper, we will continue to study the construction methods for uni-
norms on bounded lattices by extending the given uninorms based on closure operators
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(resp. interior operators) and t-superconorms (resp. t-subnorms). That is, we will try to
construct uninorms by the given uninorms, closure operators (resp. interior operators)
and t-superconorms (resp. t-subnorms). Meanwhile, the resulting methods for uninorms
generalize some known methods for uninorms in the literature.

The structure of this paper is as follows. In Section 2, we recall some basic con-
cepts and properties related to lattices and aggregation operators on bounded lattices,
which will be used in this paper. In Section 3, we propose construction methods for uni-
norms on bounded lattices by extending the given uninorms based on closure operators
(resp. interior operators) and t-superconorms (resp. t-subnorms). In Section 4, some
conclusions are added.

2. PRELIMINARIES

Definition 2.1. (Birkhoff [2]) A lattice (L,≤) is bounded if it has top and bottom
elements, which are written as 1 and 0, respectively, that is, there exist two elements
1, 0 ∈ L such that 0 ≤ x ≤ 1 for all x ∈ L.

Throughout this article, unless stated otherwise, L will denote a bounded lattice with
the top and bottom elements 1 and 0, respectively.

Definition 2.2. (Birkhoff [2]) Let L be a bounded lattice, a, b ∈ L with a ≤ b. A
subinterval [a, b] of L is defined as [a, b] = {x ∈ L : a ≤ x ≤ b}. Similarly, we can define
[a, b) = {x ∈ L : a ≤ x < b}, (a, b] = {x ∈ L : a < x ≤ b} and (a, b) = {x ∈ L : a < x <
b}. If a and b are incomparable, then we use the notation a ∥ b.

In the following, Ia denotes the set of all incomparable elements with a, that is,
Ia = {x ∈ L | x ∥ a}. Ia denotes the set of all comparable elements with a, that is,
Ia = {x ∈ L | x ∦ a}. Iba denotes the set of elements that are incomparable with a but
comparable with b, that is, Iba = {x ∈ L | x ∥ a and x ∦ b}. Ia,b denotes the set of
elements that are incomparable with both a and b, that is, Ia,b = {x ∈ L | x ∥ a and x ∥
b}. Obviously, Iaa = ∅ and Ia,a = Ia.

Definition 2.3. (Saminger [24]) An operation T : L2 → L is called a t-norm on L if
it is commutative, associative, and increasing with respect to both variables, and it has
the neutral element 1 ∈ L, that is, T (1, x) = x for all x ∈ L.

Definition 2.4. (Çaylı et all. [4]) An operation S : L2 → L is called a t-conorm on L
if it is commutative, associative, and increasing with respect to both variables, and it
has the neutral element 0 ∈ L, that is, S(0, x) = x for all x ∈ L.

Definition 2.5. (Palmeira and Bedregal [23]) A binary operation F : L2 → L is called
a t-subnorm on L if it is commutative, increasing, associative, and F (x, y) ≤ x ∧ y for
any (x, y) ∈ L2.

Definition 2.6. (Palmeira and Bedregal [23]) A binary operation R : L2 → L is called
a t-superconorm on L if it is commutative, increasing, associative, and x ∨ y ≤ R(x, y)
for any (x, y) ∈ L2.
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Definition 2.7. (Everett [9]) A mapping cl : L → L is said to be a closure operator
on L if, for all x, y ∈ L, it satisfies the following three conditions:

(1) x ≤ cl(x);

(2) cl(x ∨ y) = cl(x) ∨ cl(y);

(3) cl(cl(x)) = cl(x).

Definition 2.8. (Ouyang and Zhang [22]) A mapping int : L → L is said to be an
interior operator on L if, for all x, y ∈ L, it satisfies the following three conditions:

(1) int(x) ≤ x;

(2) int(x ∧ y) = int(x) ∧ int(y);

(3) int(int(x)) = int(x).

Definition 2.9. (Karaçal and Mesiar [17] An operation U : L2 → L is called a uninorm
on L if it is commutative, associative, and increasing with respect to both variables, and
it has the neutral element e ∈ L, that is, U(e, x) = x for all x ∈ L.

Theorem 2.10. (Zhao and Wu [29]) Let e ∈ L \ {0, 1}, cl : L → L be a closure
operator, T be a t-norm on [0, e] and S be a t-conorm on [e, 1] with S(x, y) < 1 for all
(x, y) ∈ (e, 1)2 . If x ∥ y for all x ∈ Ie and y ∈ (e, 1), then the function U : L2 → L
defined by

U(x, y) =



T (x, y) if (x, y) ∈ [0, e]2,

x if (x, y) ∈ Ie × (L \ ({1} ∪ Ie)) ∪ [0, e)× (e, 1),

y if (x, y) ∈ (L \ ({1} ∪ Ie))× Ie ∪ (e, 1)× [0, e),

cl(x) ∨ cl(y) if (x, y) ∈ Ie × Ie ∪ {1} × L ∪ L× {1},
S(x, y) otherwise,

is a uninorm on L with the neutral element e.

Theorem 2.11. (Zhao and Wu [29]) Let e ∈ L \ {0, 1}, int : L → L be an interior
operator, S be a t-conorm on [e, 1] and T be a t-norm on [0, e] with T (x, y) > 0 for all
(x, y) ∈ (0, e)2. If x ∥ y for all x ∈ Ie and y ∈ (0, e), then the function U : L2 → L
defined by

U(x, y) =



S(x, y) if (x, y) ∈ [e, 1]2,

x if (x, y) ∈ Ie × (L \ ({0} ∪ Ie)) ∪ (e, 1]× (0, e),

y if (x, y) ∈ (L \ ({0} ∪ Ie))× Ie ∪ (0, e)× (e, 1],

int(x) ∧ int(y) if (x, y) ∈ Ie × Ie ∪ {0} × L ∪ L× {0},
T (x, y) otherwise,

is a uninorm on L with the neutral element e.

Proposition 2.12. (Ji [16]) Let A be a nonempty set and A1, A2, . . . , An be subsets
of A. Let H be a commutative binary operation on A. Then H is associative on
A1 ∪A2 ∪ . . . ∪An if and only if all of the following statements hold:
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(i) for every combination {i, j, k} of size 3 chosen from {1, 2, . . . , n}, H(x,H(y, z)) =
H(H(x, y), z) = H(y,H(x, z)) for all x ∈ Ai, y ∈ Aj , z ∈ Ak;

(ii) for every combination {i, j} of size 2 chosen from {1, 2, . . . , n}, H(x,H(y, z)) =
H(H(x, y), z) for all x ∈ Ai, y ∈ Ai, z ∈ Aj ;

(iii) for every combination {i, j} of size 2 chosen from {1, 2, . . . , n}, H(x,H(y, z)) =
H(H(x, y), z) for all x ∈ Ai, y ∈ Aj , z ∈ Aj ;

(iv) for every i ∈ {1, 2, . . . , n}, H(x,H(y, z)) = H(H(x, y), z) for all x, y, z ∈ Ai.

3. NEW METHODS TO CONSTRUCT UNINORMS BY EXTENDING GIVEN
UNINORMS

In this section, we mainly construct new uninorms by extending given uninorms based
on closure operators (resp. interior operators) and t-superconorms (resp. t-subnorms).

First, we propose a new construction method for uninorms on bounded lattices by
extending a given uninorm by a closure operator and a t-superconorm under some con-
ditions. Moreover, we obtain that these conditions are necessary and sufficient under
some additional restraints on the bounded lattices. Meanwhile, these restraints always
exist in a bounded lattice.

Theorem 3.1. Let a ∈ L \ {0, 1}, cl : L → L be a closure operator, U∗ be a uninorm
on [0, a] with a neutral element e and R be a t-superconorm on [a, 1] with R(a, a) = a.
Suppose that the following conditions hold:

(1) U∗(x, y) /∈ [0, e] for all (x, y) ∈ Iae × Iae ,

(2) U∗(x, y) =

{
x if (x, y) ∈ [0, e)× (Iae ∪ (e, a]),

y if (x, y) ∈ (Iae ∪ (e, a])× [0, e),

(3) x ∥ y for all x ∈ Ie,a and y ∈ Iae ∪ Iea ∪ (a, 1).

Then the function U : L2 → L defined by

U(x, y) =



U∗(x, y) if (x, y) ∈ [0, a]2,

x if (x, y) ∈ Ie,a × (L \ ({1} ∪ Ie,a)) ∪ [0, e)× (Iea ∪ (a, 1))

∪ (Iea ∪ (a, 1))× {e},
y if (x, y) ∈ (L \ ({1} ∪ Ie,a))× Ie,a ∪ (Iea ∪ (a, 1))× [0, e)

∪ {e} × (Iea ∪ (a, 1)),

cl(x) ∨ cl(y) if (x, y) ∈ Ie,a × Ie,a ∪ {1} × L ∪ L× {1},
R(x ∨ a, y ∨ a) otherwise,

is a uninorm on L with the neutral element e if and only if R(x, y) < 1 for all (x, y) ∈
(a, 1)2 and x ∨ a < 1 for all x ∈ Iea.
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P r o o f . Necessity: Let U be a uninorm on L with the neutral element e. We prove
that R(x, y) < 1 for all (x, y) ∈ (a, 1)2 and x ∨ a < 1 for all x ∈ Iea.

(1) R(x, y) < 1 for all (x, y) ∈ (a, 1)2.

Assume that there exists (x, y) ∈ (a, 1)2 such that R(x, y) = 1. Then U(x, U(y, 0)) =
U(x, 0) = 0 and U(U(x, y), 0) = U(R(x, y), 0) = U(1, 0) = 1. Since 0 ̸= 1, this leads
to a contradiction with the associativity property of U(x, y). Thus, R(x, y) < 1 for all
(x, y) ∈ (a, 1)2.

(2) x ∨ a < 1 for all x ∈ Iea.

Assume that there exists x ∈ Iea such that x∨a = 1. Then U(x, U(x, 0)) = U(x, 0) = 0
and U(U(x, x), 0) = U(R(x ∨ a, x ∨ a), 0) = U(1, 0) = 1. Since 0 ̸= 1, this leads to a
contradiction with the associativity property of U(x, y). Thus, x ∨ a < 1 for all x ∈ Iea.

Sufficiency: By the definition of U , we can obtain that the commutativity of U and
the fact that e is the neutral element of U hold. Hence, we prove only the monotonicity
and the associativity of U .

I. Monotonicity: We need to prove that if x ≤ y, then U(x, z) ≤ U(y, z) for all z ∈ L.
If x = 1, then U(x, z) = 1 = U(y, z) for all z ∈ L. If y = 1, then U(x, z) ≤ 1 = U(y, z)
for all x, z ∈ L. If z = 1, then U(x, z) = 1 = U(y, z) for all x, y ∈ L. It is obvious that
U(x, z) ≤ U(y, z) if both x and y belong to one of the intervals [0, e), {e}, Iae , (e, a], Iea, Ie,a
or (a, 1) for all z ∈ L or z ∈ {e} for all x, y ∈ L \ {1}. Next we only need to prove the
remaining cases.

1. x ∈ [0, e)
1.1. y ∈ {e}
1.1.1. z ∈ [0, e) ∪ Iae ∪ (e, a]

U(x, z) = U∗(x, z) ≤ U∗(y, z) = U(y, z)
1.1.2. z ∈ Iea ∪ (a, 1)

U(x, z) = x ≤ z = U(y, z)
1.1.3. z ∈ Ie,a

U(x, z) = z = U(y, z)
1.2. y ∈ Iae ∪ (e, a]
1.2.1. z ∈ [0, e) ∪ Iae ∪ (e, a]

U(x, z) = U∗(x, z) ≤ U∗(y, z) = U(y, z)
1.2.2. z ∈ Iea ∪ (a, 1)

U(x, z) = x ≤ R(y ∨ a, z ∨ a) = U(y, z)
1.2.3. z ∈ Ie,a

U(x, z) = z = U(y, z)
1.3. y ∈ Iea
1.3.1. z ∈ [0, e)

U(x, z) = U∗(x, z) ≤ z = U(y, z)
1.3.2. z ∈ Iae ∪ (e, a]

U(x, z) = U∗(x, z) = x < a < R(y ∨ a, z ∨ a) = U(y, z)
1.3.3. z ∈ Iea ∪ (a, 1)

U(x, z) = x < a < R(y ∨ a, z ∨ a) = U(y, z)
1.3.4. z ∈ Ie,a

U(x, z) = z = U(y, z)
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1.4. y ∈ Ie,a
1.4.1. z ∈ [0, e)

U(x, z) = U∗(x, z) ≤ x < y = U(y, z)
1.4.2. z ∈ Iae ∪ (e, a] ∪ Iea ∪ (a, 1)

U(x, z) = x < y = U(y, z)
1.4.3. z ∈ Ie,a

U(x, z) = z ≤ cl(y) ∨ cl(z) = U(y, z)
1.5. y ∈ (a, 1)
1.5.1. z ∈ [0, e)

U(x, z) = U∗(x, z) ≤ z = U(y, z)
1.5.2. z ∈ Iae ∪ (e, a]

U(x, z) = U∗(x, z) ≤ x < a < R(y ∨ a, z ∨ a) = U(y, z)
1.5.3. z ∈ Iea ∪ (a, 1)

U(x, z) = x < a < R(y ∨ a, z ∨ a) = U(y, z)
1.5.4. z ∈ Ie,a

U(x, z) = z = U(y, z)

2. x ∈ Iae
2.1. y ∈ (e, a]
2.1.1. z ∈ [0, e) ∪ Iae ∪ (e, a]

U(x, z) = U∗(x, z) ≤ U∗(y, z) = U(y, z)
2.1.2. z ∈ Iea ∪ (a, 1)

U(x, z) = R(x ∨ a, z ∨ a) ≤ R(y ∨ a, z ∨ a) = U(y, z)
2.1.3. z ∈ Ie,a

U(x, z) = z = U(y, z)
2.2. y ∈ Iea

2.2.1. z ∈ [0, e)
U(x, z) = U∗(x, z) = z = U(y, z)

2.2.2. z ∈ Ie,a
U(x, z) = z = U(y, z)

2.2.3. z ∈ Iae ∪ (e, a]
U(x, z) = U∗(x, z) ≤ a < R(y ∨ a, z ∨ a) = U(y, z)

2.2.4. z ∈ Iea ∪ (a, 1)
U(x, z) = R(x ∨ a, z ∨ a) ≤ R(y ∨ a, z ∨ a) = U(y, z)

2.3. y ∈ (a, 1)
2.3.1. z ∈ [0, e) ∪ Ie,a

U(x, z) = z = U(y, z)
2.3.2. z ∈ Iae ∪ (e, a]

U(x, z) = U∗(x, z) ≤ a < R(y ∨ a, z ∨ a) = U(y, z)
2.3.3. z ∈ Iea ∪ (a, 1)

U(x, z) = R(x ∨ a, z ∨ a) ≤ R(y ∨ a, z ∨ a) = U(y, z)

3. x ∈ {e}
3.1. y ∈ (e, a]

3.1.1. z ∈ [0, e) ∪ Iae ∪ (e, a]
U(x, z) = U∗(x, z) ≤ U∗(y, z) = U(y, z)

3.1.2. z ∈ Iea ∪ (a, 1)
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U(x, z) = z ≤ R(y ∨ a, z ∨ a) = U(y, z)
3.1.3. z ∈ Ie,a

U(x, z) = z = U(y, z)
3.2. y ∈ Iea ∪ (a, 1)
3.2.1. z ∈ [0, e) ∪ Ie,a

U(x, z) = z = U(y, z)
3.2.2. z ∈ Iae ∪ (e, a] ∪ Iea ∪ (a, 1)

U(x, z) = z < R(y ∨ a, z ∨ a) = U(y, z)

4. x ∈ (e, a], y ∈ Iea ∪ (a, 1)
4.1. z ∈ [0, e) ∪ Ie,a

U(x, z) = z = U(y, z)
4.2. z ∈ Iae ∪ (e, a]

U(x, z) = U∗(x, z) ≤ a < R(y ∨ a, z ∨ a) = U(y, z)
4.3. z ∈ Iea ∪ (a, 1)

U(x, z) = R(x ∨ a, z ∨ a) ≤ R(y ∨ a, z ∨ a) = U(y, z)

5. x ∈ Iea, y ∈ (a, 1)
5.1. z ∈ [0, e) ∪ Ie,a

U(x, z) = z = U(y, z)
5.2. z ∈ Iae ∪ (e, a] ∪ Iea ∪ (a, 1)

U(x, z) = R(x ∨ a, z ∨ a) ≤ R(y ∨ a, z ∨ a) = U(y, z)

Therefore, the monotonicity property of U holds.

II. Associativity: We need to prove that U(x, U(y, z)) = U(U(x, y), z) for all x, y, z ∈
L. If at least one of x, y, z equals to 1 or e, then U(x, U(y, z)) = U(U(x, y), z) holds.
Then we need to verify the following cases by Proposition 2.12.

1. If x, y, z ∈ [0, e) ∪ Iae ∪ (e, a], then since U∗ is associative, we have U(x, U(y, z))
= U(U(x, y), z) = U(y, U(x, z)).

2. If x, y, z ∈ Iea ∪ (a, 1), then since R is associative, we have U(x, U(y, z)) =
U(U(x, y), z).

3. If x, y, z ∈ Ie,a, then U(x, U(y, z)) = U(x, cl(y) ∨ cl(z)) = cl(x) ∨ cl(y) ∨ cl(z) =
U(cl(x) ∨ cl(y), z) = U(U(x, y), z).

4. If x, y ∈ [0, e) and z ∈ Iea ∪ (a, 1), then U(x, U(y, z)) = U(x, y) = U∗(x, y) =
U(U∗(x, y), z) = U(U(x, y), z).

5. If x, y ∈ Iae ∪ (e, a] and z ∈ Iea ∪ (a, 1), then U(x, U(y, z)) = U(x,R(y ∨ a, z ∨ a)) =
R(x∨a,R(y∨a, z∨a)) = R(a,R(a, z∨a)) = R(R(a, a), z∨a) = R(a, z∨a) = R(U∗(x, y)∨
a, z ∨ a) = U(U∗(x, y), z) = U(U(x, y), z) and U(y, U(x, z)) = U(y,R(x ∨ a, z ∨ a)) =
R(y ∨ a,R(x ∨ a, z ∨ a)) = R(a,R(a, z ∨ a)) = R(R(a, a), z ∨ a) = R(a, z ∨ a). Thus
U(x, U(y, z)) = U(U(x, y), z) = U(y, U(x, z)).

6. If x, y ∈ [0, e) ∪ Iae ∪ (e, a] and z ∈ Ie,a, then U(x, U(y, z)) = U(x, z) = z =
U(U∗(x, y), z) = U(U(x, y), z) and U(y, U(x, z)) = U(y, z) = z. Thus U(x, U(y, z)) =
U(U(x, y), z) = U(y, U(x, z)).

7. If x, y ∈ Iea and z ∈ Ie,a, then U(x, U(y, z)) = U(x, z) = z = U(R(x∨a, y∨a), z) =
U(U(x, y), z).
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8. If x, y ∈ Ie,a, z ∈ (a, 1) and cl(x) ∨ cl(y) = 1, then U(x, U(y, z)) = U(x, y) =
cl(x) ∨ cl(y) = 1 = U(1, z) = U(cl(x) ∨ cl(y), z) = U(U(x, y), z);

If x, y ∈ Ie,a z ∈ (a, 1) and cl(x) ∨ cl(y) ̸= 1, then U(x, U(y, z)) = U(x, y) = cl(x) ∨
cl(y) = U(cl(x) ∨ cl(y), z) = U(U(x, y), z).

9. If x ∈ [0, e) and y, z ∈ Iea ∪ (a, 1), then U(x, U(y, z)) = U(x,R(y ∨ a, z ∨ a)) =
x = U(x, z) = U(U(x, y), z) and U(y, U(x, z)) = U(y, x) = x. Thus U(x, U(y, z)) =
U(U(x, y), z) = U(y, U(x, z)).

10. If x ∈ Iae ∪ (e, a] and y, z ∈ Iea ∪ (a, 1), then since R is associative, we have
U(x, U(y, z)) = U(U(x, y), z) = U(y, U(x, z)).

11. If x ∈ [0, e)∪ Iae ∪ (e, a]∪ Iea, y, z ∈ Ie,a and cl(y)∨ cl(z) = 1, then U(x, U(y, z)) =
U(x, cl(y) ∨ cl(z)) = U(x, 1) = 1 = cl(y) ∨ cl(z) = U(U(x, y), z);

If x ∈ [0, e) ∪ Iae ∪ (e, a] ∪ Iea, y, z ∈ Ie,a and cl(y) ∨ cl(z) ̸= 1, then U(x, U(y, z)) =
U(x, cl(y) ∨ cl(z)) = cl(y) ∨ cl(z) = U(y, z) = U(U(x, y), z).

12. If x ∈ Ie,a and y, z ∈ (a, 1), then U(x, U(y, z)) = U(x,R(y ∨ a, z ∨ a)) = x =
U(x, z) = U(U(x, y), z).

13. If x ∈ [0, e), y ∈ Iae ∪(e, a] and z ∈ Iea∪(a, 1), then U(x, U(y, z)) = U(x,R(y∨a, z∨
a)) = x = U(x, z) = U(U(x, y), z) and U(y, U(x, z)) = U(y, x) = x. Thus U(x, U(y, z))
= U(U(x, y), z) = U(y, U(x, z)).

14. If x ∈ [0, e), y ∈ Iea and z ∈ Ie,a, then U(x, U(y, z)) = U(x, z) = z = U(x, z) =
U(U(x, y), z) and U(y, U(x, z)) = U(y, z) = z. Thus U(x, U(y, z)) = U(U(x, y), z) =
U(y, U(x, z)).

15. If x ∈ [0, e), y ∈ Ie,a and z ∈ (a, 1), then U(x, U(y, z)) = U(x, y) = y = U(y, z) =
U(U(x, y), z) and U(y, U(x, z)) = U(y, x) = y. Thus U(x, U(y, z)) = U(U(x, y), z)
= U(y, U(x, z)).

16. If x ∈ Iae , y ∈ Iea and z ∈ Ie,a, then U(x, U(y, z)) = U(x, z) = z = U(R(x ∨
a, y ∨ a), z) = U(U(x, y), z) and U(y, U(x, z)) = U(y, z) = z. Thus U(x, U(y, z)) =
U(U(x, y), z) = U(y, U(x, z)).

17. If x ∈ (e, a], y ∈ Iea and z ∈ Ie,a, then U(x, U(y, z)) = U(x, z) = z = U(R(x ∨
a, y ∨ a), z) = U(U(x, y), z) and U(y, U(x, z)) = U(y, z) = z. Thus U(x, U(y, z)) =
U(U(x, y), z) = U(y, U(x, z)).

18. If x ∈ Iae ∪ (e, a] ∪ Iea, y ∈ Ie,a and z ∈ (a, 1), then U(x, U(y, z)) = U(x, y) =
y = U(y, z) = U(U(x, y), z) and U(y, U(x, z)) = U(y,R(x ∨ a, z ∨ a)) = y. Thus
U(x, U(y, z)) = U(U(x, y), z) = U(y, U(x, z)).

Combining the above cases, we obtain that U(x, U(y, z)) = U(U(x, y), z) for all
x, y, z ∈ L by Proposition 2.12. Therefore, U is a uninorm on L with the neutral
element e. □

In the following, we investigate the additional conditions under which the sufficient
conditions (1),(2) and (3) in Theorem 3.1 are necessary. The key point is that these
requirements on L are relatively weak and can always be fulfilled.

Lemma 3.2. If (a, 1) ̸= ∅ and Iea ̸= ∅, then the condition U∗(x, y) /∈ [0, e] for all
(x, y) ∈ Iae × Iae is necessary.
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P r o o f . First, we give the proof of U∗(x, y) /∈ [0, e) for all (x, y) ∈ Iae × Iae . Assume
that there exists (x, y) ∈ Iae × Iae such that U∗(x, y) ∈ [0, e). Since (a, 1) ̸= ∅, there
exists z ∈ (a, 1). Then U(x, U(y, z)) = U(x,R(y ∨ a, z ∨ a)) = R(x ∨ a,R(y ∨ a, z ∨
a)) = R(a,R(a, z ∨ a)) = R(a, z) and U(U(x, y), z) = U(U∗(x, y), z) = U∗(x, y). Since
U∗(x, y) ̸= R(a, z), this is a contradiction with the associativity property of U .

Next we prove that U∗(x, y) ̸= e for all (x, y) ∈ Iae × Iae . Assume that there exists
(x, y) ∈ Iae × Iae such that U∗(x, y) = e. Since Iea ̸= ∅, there exists z ∈ Iea. Then
U(x, U(y, z)) = U(x,R(y ∨ a, z ∨ a)) = R(x ∨ a,R(y ∨ a, z ∨ a)) = R(a,R(a, z ∨ a)) =
R(a, z∨a) and U(U(x, y), z) = U(e, z) = z. Since R(a, z∨a) ̸= z, this is a contradiction
with the associativity property of U .

Therefore, we can obtain that U∗(x, y) /∈ [0, e] for all (x, y) ∈ Iae × Iae . □

Lemma 3.3. If (a, 1) ̸= ∅, then the conditions that x ∥ y for all x ∈ Ie,a and

y ∈ Iae ∪ Iea ∪ (a, 1) and U∗(x, y) =

{
x if (x, y) ∈ [0, e)× (Iae ∪ (e, a]),

y if (x, y) ∈ (Iae ∪ (e, a])× [0, e),
are necessary.

P r o o f . (1) First, we give the proof of x ∥ y for all x ∈ Ie,a and y ∈ Iea ∪ (a, 1). Assume
that there exist x ∈ Ie,a and y ∈ Iea∪(a, 1) such that x ∦ y, i.e., x < y. Then U(0, x) = x
and U(0, y) = 0. Since x ≰ 0, this is a contradiction with the monotonicity property of
U . Thus x ∥ y for all x ∈ Ie,a and y ∈ Iea ∪ (a, 1).

Next, we give the proof of x ∥ y for all x ∈ Ie,a and y ∈ Iae . Assume that there exist
x ∈ Ie,a and y ∈ Iae such that x ∦ y, i.e., y < x. Since (a, 1) ̸= ∅, there exists z ∈ (a, 1).
Then U(z, x) = x and U(z, y) = R(z ∨ a, y ∨ a) = R(z, a). Since x ∥ R(z, a) from the
above proof, this contradicts the monotonicity property of U . Thus, x ∥ y for all x ∈ Ie,a
and y ∈ Iae .

Combining the above proofs, we can obtain that x ∥ y for all x ∈ Ie,a and y ∈
Iae ∪ Iea ∪ (a, 1).

(2) First, we prove U∗(x, y) =

{
x if (x, y) ∈ [0, e)× (e, a],

y if (x, y) ∈ (e, a]× [0, e).
Then we just give the

proof of U∗(x, y) = x for all (x, y) ∈ [0, e) × (e, a], and the other case can be obtained
immediately by the commutativity property of U∗. From the definition of U , we know
that U(x, y) = U∗(x, y) = x for all (x, y) ∈ [0, e) × {e} and U(x, y) = x for all (x, y) ∈
[0, e) × (a, 1). Since the monotonicity of U , U(x, y) = x for all (x, y) ∈ [0, e) × (e, a].
By the definition of U , U∗(x, y) = U(x, y) = x for all (x, y) ∈ [0, e) × (e, a]. Thus

U∗(x, y) =

{
x if (x, y) ∈ [0, e)× (e, a],

y if (x, y) ∈ (e, a]× [0, e).

Next, we prove U∗(x, y) =

{
x if (x, y) ∈ [0, e)× Iae ,

y if (x, y) ∈ Iae × [0, e).
Now we give the proof of

U∗(x, y) = x for all (x, y) ∈ [0, e) × Iae , and the other case can be proved immedi-
ately by the commutativity property of U∗. From the above proof, we can obtain
that U∗(x, y) ∈ [0, e) for all (x, y) ∈ [0, e) × {a} ∪ {a} × [0, e). Since the mono-
tonicity of U∗, U∗(x, y) ∈ [0, e) for all (x, y) ∈ [0, e) × Iae . Assume that there exists



864 JUN QI AND ZHEN-YU XIU

(x, y) ∈ [0, e)× Iae such that U∗(x, y) ̸= x. Since (a, 1) ̸= ∅, there exists z ∈ (a, 1). Then
U(x, U(y, z)) = U(x,R(y ∨ a, z ∨ a)) = x and U(U(x, y), z) = U(U∗(x, y), z) = U∗(x, y).
Since U∗(x, y) ̸= x, this is a contradiction with the associativity property of U . Thus

U∗(x, y) =

{
x if (x, y) ∈ [0, e)× Iae ,

y if (x, y) ∈ Iae × [0, e).
□

According to the results in Theorem 3.1 and Lemmas 3.2 and 3.3, we can obtain the
following result eventually. That is, if (a, 1) ̸= ∅ and Iea ̸= ∅, then all the conditions are
necessary and sufficient.

Theorem 3.4. Let a ∈ L \ {0, 1}, cl : L → L be a closure operator, U∗ be a uninorm
on [0, a] with a neutral element e and R be a t-superconorm on [a, 1] with R(a, a) = a.
Assume (a, 1) ̸= ∅ and Iea ̸= ∅. Then the function U : L2 → L defined by

U(x, y) =



U∗(x, y) if (x, y) ∈ [0, a]2,

x if (x, y) ∈ Ie,a × (L \ ({1} ∪ Ie,a)) ∪ [0, e)× (Iea ∪ (a, 1))

∪ (Iea ∪ (a, 1))× {e},
y if (x, y) ∈ (L \ ({1} ∪ Ie,a))× Ie,a ∪ (Iea ∪ (a, 1))× [0, e)

∪ {e} × (Iea ∪ (a, 1)),

cl(x) ∨ cl(y) if (x, y) ∈ Ie,a × Ie,a ∪ {1} × L ∪ L× {1},
R(x ∨ a, y ∨ a) otherwise,

is a uninorm on L with the neutral element e if and only if the following conditions hold:

(1) U∗(x, y) /∈ [0, e] for all (x, y) ∈ Iae × Iae ,

(2) U∗(x, y) =

{
x if (x, y) ∈ [0, e)× (Iae ∪ (e, a]),

y if (x, y) ∈ (Iae ∪ (e, a])× [0, e),

(3) x ∥ y for all x ∈ Ie,a and y ∈ Iae ∪ Iea ∪ (a, 1),

(4) R(x, y) < 1 for all (x, y) ∈ (a, 1)2,

(5) x ∨ a < 1 for all x ∈ Iea.

In Theorem 3.1, if taking e = a, then [0, a] = [0, e], Ie,a = Ie, I
a
e ∪ Iea ∪ (e, a] = ∅ and

U∗ is a t-norm on [0, e]. Thus, the conditions (1), (2), (5) and the condition x ∥ y for all
x ∈ Ie,a and y ∈ Iae ∪ Iea in (3) naturally hold. In this case, we can obtain the following
result.

Corollary 3.5. Let e ∈ L \ {0, 1}, cl : L → L be a closure operator, T be a t-norm on
[0, e] and R be a t-superconorm on [e, 1] with R(e, e) = e and U be the binary operation
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on L defined by

U(x, y) =



T (x, y) if (x, y) ∈ [0, e]2,

x if (x, y) ∈ Ie × (L \ ({1} ∪ Ie)) ∪ [0, e)× (e, 1)

∪ (e, 1)× {e},
y if (x, y) ∈ (L \ ({1} ∪ Ie))× Ie ∪ (e, 1)× [0, e)

∪ {e} × (e, 1),

cl(x) ∨ cl(y) if (x, y) ∈ Ie × Ie ∪ {1} × L ∪ L× {1},
R(x ∨ e, y ∨ e) otherwise.

Suppose that x ∥ y for all x ∈ Ie and y ∈ (e, 1). Then U is a uninorm on L with the
neutral element e if and only if R(x, y) < 1 for all (x, y) ∈ (e, 1)2 .

Remark 3.6. In Corollary 3.5, if we take the t-superconorm R as a t-conorm, then
we can obtain the uninorm in Theorem 2.10. Moreover, compared with Theorem 2.10,
the condition R(x, y) < 1 for all (x, y) ∈ (e, 1)2 in Corollary 3.5 is both sufficient and
necessary. This shows that our method generalizes the known method in the literature.

The next example illustrates the construction method of uninorms on bounded lattices
in Theorem 3.1.

Example 3.7. Given a bounded lattice L1 = {0, b,m, e, c, q, a, n, d, s, f, k, l, 1} depicted
in Figure 1, a uninorm U∗ : [0, a]2 → [0, a] shown in Table 1, a t-superconorm R on
[a, 1] defined by R(x, y) = x ∨ y for all x, y ∈ [a, 1], and a closure operator cl : L1 → L1

defined by cl(x) = x ∨ k for all x ∈ L1. It is easy to see that L1, U
∗, R and cl satisfy

the conditions in Theorem 3.1. By Theorem 3.1, we can obtain a uninorm U on L1 with
the neutral element e, as shown in Table 2.
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Fig. 1. The lattice L1.



866 JUN QI AND ZHEN-YU XIU

U∗ 0 b e m c a
0 0 0 0 0 0 0
b 0 b b b b b
e 0 b e m c a
m 0 b m m c a
c 0 b c c c a
a 0 b a a a a

Tab. 1. The uninorm U∗ on [0, a].

U 0 b e m c a d n s f l q k 1
0 0 0 0 0 0 0 0 0 0 0 0 q k 1
b 0 b b b b b b b b b b q k 1
e 0 b e m c a d n s f l q k 1
m 0 b m m c a d s s f l q k 1
c 0 b c c c a d s s f l q k 1
a 0 b a a a a d s s f l q k 1
d 0 b d d d d d s s f l q k 1
n 0 b n s s s s s s l l q k 1
s 0 b s s s s s s s l l q k 1
f 0 b f f f f f l l f l q k 1
l 0 b l l l l l l l l l q k 1
q q q q q q q q q q q q k k 1
k k k k k k k k k k k k k k 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tab. 2. The uninorm U∗ on [0, a].

Next, we propose a new construction method for uninorms on bounded lattices by
extending a given uninorm based on an interior operator and a t-subnorm. Meanwhile,
the dual result of Theorem 3.1 is given.

Theorem 3.8. Let b ∈ L\{0, 1}, int : L → L be an interior operator, U∗ be a uninorm
on [b, 1] with a neutral element e and F be a t-subnorm on [0, b] with F (b, b) = b.
Suppose that the following conditions hold:

(1) U∗(x, y) /∈ [e, 1] for all (x, y) ∈ Ibe × Ibe ,

(1) U∗(x, y) =

{
x if (x, y) ∈ (e, 1]× (Ibe ∪ [b, e)),

y if (x, y) ∈ (Ibe ∪ [b, e))× (e, 1],

(3) x ∥ y for all x ∈ Ie,b and y ∈ Ibe ∪ Ieb ∪ (0, b).
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Then the function U : L2 → L defined by

U(x, y) =



U∗(x, y) if (x, y) ∈ [b, 1]2,

x if (x, y) ∈ Ie,b × (L \ ({0} ∪ Ie,b)) ∪ (e, 1]× (Ieb ∪ (0, b))

∪ (Ieb ∪ (0, b))× {e},
y if (x, y) ∈ (L \ ({0} ∪ Ie,b))× Ie,b ∪ (Ieb ∪ (0, b))× (e, 1]

∪ {e} × (Ieb ∪ (0, b)),

int(x) ∧ int(y) if (x, y) ∈ Ie,b × Ie,b ∪ {0} × L ∪ L× {0},
F (x ∧ b, y ∧ b) otherwise,

is a uninorm on L with the neutral element e if and only if F (x, y) > 0 for all (x, y) ∈
(0, b)2 and x ∧ b > 0 for all x ∈ Ieb .

P r o o f . It can be proved immediately by a proof similar to Theorem 3.1. □

Dually, we give the additional conditions under which some sufficient conditions in
Theorem 3.8 are necessary. The key point is that these two requirements on L are
relatively weak and can always be fulfilled.

Remark 3.9. Let b ∈ L \ {0, 1} and U in Theorem 3.8 be a uninorm on L with the
neutral element e.

(1) If (0, b) ̸= ∅ and Ieb ̸= ∅, then the condition U∗(x, y) /∈ [e, 1] for all (x, y) ∈ Ibe × Ibe
is necessary.

(2) If (0, b) ̸= ∅, then the conditions that U∗(x, y) =

{
x if (x, y) ∈ (e, 1]× (Ibe ∪ [b, e)),

y if (x, y) ∈ (Ibe ∪ [b, e))× (e, 1]

and x ∥ y for all x ∈ Ie,b and y ∈ Ibe ∪ Ieb ∪ (0, b) are necessary.

Combining the results in Theorem 3.8 and Remark 3.9, we can obtain the following
result eventually.

Theorem 3.10. Let b ∈ L\{0, 1}, int : L → L be an interior operator, U∗ be a uninorm
on [b, 1] with a neutral element e and F be a t-subnorm on [0, b] with F (b, b) = b. Suppose
that (0, b) ̸= ∅ and Ieb ̸= ∅. Then the function U : L2 → L defined by

U(x, y) =



U∗(x, y) if (x, y) ∈ [b, 1]2,

x if (x, y) ∈ Ie,b × (L \ ({0} ∪ Ie,b)) ∪ (e, 1]× (Ieb ∪ (0, b))

∪ (Ieb ∪ (0, b))× {e},
y if (x, y) ∈ (L \ ({0} ∪ Ie,b))× Ie,b ∪ (Ieb ∪ (0, b))× (e, 1]

∪ {e} × (Ieb ∪ (0, b)),

int(x) ∧ int(y) if (x, y) ∈ Ie,b × Ie,b ∪ {0} × L ∪ L× {0},
F (x ∧ b, y ∧ b) otherwise,

is a uninorm on L with the neutral element e if and only if the following conditions hold:
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(1) U∗(x, y) /∈ [e, 1] for all (x, y) ∈ Ibe × Ibe ,

(2) U∗(x, y) =

{
x if (x, y) ∈ (e, 1]× (Ibe ∪ [b, e)),

y if (x, y) ∈ (Ibe ∪ [b, e))× (e, 1],

(3) x ∥ y for all x ∈ Ie,b and y ∈ Ibe ∪ Ieb ∪ (0, b),

(4) F (x, y) > 0 for all (x, y) ∈ (0, b)2,

(5) x ∧ b > 0 for all x ∈ Ieb .

In Theorem 3.8, if taking e = b, then [b, 1] = [e, 1], Ie,b = Ie, I
b
e ∪ Ieb ∪ [b, e) = ∅ and

U∗ is a t-conorm on [e, 1]. Thus, (1), (2), (5) and the condition x ∥ y for all x ∈ Ie,b and
y ∈ Ibe ∪ Ieb in (3) naturally hold. In this case, we can obtain the following result.

Corollary 3.11. Let e ∈ L\{0, 1}, int : L → L be an interior operator, S be a t-conorm
on [e, 1], F be a t-subnorm on [0, e] with F (e, e) = e and U be the binary operation on
L defined by

U(x, y) =



S(x, y) if (x, y) ∈ [e, 1]2,

x if (x, y) ∈ Ie × (L \ ({0} ∪ Ie)) ∪ (e, 1]× (0, e)

∪ (0, e)× {e},
y if (x, y) ∈ (L \ ({0} ∪ Ie))× Ie ∪ (0, e)× (e, 1]

∪ {e} × (0, e),

int(x) ∧ int(y) if (x, y) ∈ Ie × Ie ∪ {0} × L ∪ L× {0},
F (x ∧ e, y ∧ e) otherwise.

Suppose that x ∥ y for all x ∈ Ie and y ∈ (0, e). Then U is a uninorm on L with the
neutral element e if and only if F (x, y) > 0 for all (x, y) ∈ (0, e)2.

Remark 3.12. In Corollary 3.11, if we take the t-subnorm F as a t-norm, then we
can obtain the uninorm in Theorem 2.11. Moreover, compared with Theorem 2.11, the
condition F (x, y) > 0 for all (x, y) ∈ (0, e)2 in Corollary 3.11 is both sufficient and
necessary. This shows that our method generalizes the known method in the literature.

4. CONCLUSIONS

In this paper, we provided new methods to construct uninorms by extending given
uninorms on a subinterval of a bounded lattice based on closure operators (resp. interior
operators) and t-superconorms (resp. t-subnorms). Meanwhile, the resulting methods
for uninorms on bounded lattices generalize some known methods for uninorms in the
literature.

About the results in this paper, we give the following remarks.

(1) As we see, there are five conditions in Theorems 3.1 and 3.8, respectively. It seems
too many. However, under the additional restraints that (a, 1) ̸= ∅ and Iea ̸= ∅ on L
(resp. the conditions (0, b) ̸= ∅ and Ieb ̸= ∅ on L), these five conditions are necessary and
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sufficient. Moreover, these two requirements on L are relatively weak and can always be
fulfilled.

(2) It is the first time to construct uninorms by extending uninorms on a subinterval
of a bounded lattice with closure operators (resp. interior operators) and t-superconorms
(resp. t-subnorms). Meanwhile, we think that this may be the reason that lead to the
conditions in Theorems 3.1 and 3.8. So, in the future, we try to construct uninorms also
by extending uninorms on a subinterval of a bounded lattice by closure operators (resp.
interior operators) and t-superconorms (resp. t-subnorms) with less conditions.

The methods to construct uninorms via uninorms on a subinterval of a bounded
lattice were first introduced by Çaylı [5], and Xiu and Zheng [26], respectively, and then
were also used by Xiu and Zheng [27]. In the future, we will continue to investigate the
methods and then give the constructions and characterizations of uninorms via uninorms
on bounded lattices.
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