Kybernetika 61 no. 5, 712-740, 2025

Constructions of uninorms with ordinal sum underlying t-norms (t-conorms) on bounded lattices

Hua-Wen LiuDOI: 10.14736/kyb-2025-5-0712

Abstract:

Uninorms are a special type of aggregation operators proposed by Yager and Rybalov in 1996, and since then, there have been numerous research achievements on uninorms on the unit real interval. In 2015, the concept of uninorms was extended to a more general algebraic structure - bounded lattices. This article aims to study the construction of uninorms on bounded lattices. We first provide the construction methods of uninorms on bounded lattices by using ordinal sum t-norms or ordinal sum t-conorms. Then, we clarify that the new methods are the extensions of some construction methods in literature. Finally, some illustrative examples for the new constructions of uninorms on bounded lattices are provided. This study is the first attempt to construct using the ordinal sum underlying operators and it will open up new ideas for in-depth analysis of the structure of uninorms on bounded lattices.

Keywords:

aggregation operators, uninorms, bounded lattices, t-norms, ordinal sums

Classification:

03E72, 03B52, 03G10, 94D05

References:

  1. E. Aşıcıand R. Mesiar: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.   DOI:10.1016/j.fss.2020.02.007
  2. E. Aşıcı and R. Mesiar: On generating uninorms on some special classes of bounded lattices. Fuzzy Sets Syst. 439 (2022), 102-125.   DOI:10.1016/j.fss.2021.06.010
  3. S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014, pp. 61-66.   DOI:10.1109/SISY.2014.6923558
  4. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  5. G. D. Çaylı: Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019), 111-139.   DOI:10.1016/j.ins.2019.03.007
  6. G. D. Çaylı and R. Mesiar: Methods for obtaining uninorms on some special classes of bounded lattices. Iran. J. Fuzzy Syst. 20 (2023), 111-126.   DOI:10.22111/IJFS.2023.7660
  7. G. D. Çaylı: A characterization of uninorms on bounded lattices via closure and interior operators. Kybernetika 59 (2023), 768-790.   DOI:10.14736/kyb-2023-5-0768
  8. B. A. Davey and H. A. Priestley: Introduction to Lattices and Order (Second edition). Cambridge University Press, New York 2002.   CrossRef
  9. B. De Baets and J. Fodor: Van Melles combining function in MYCIN is a representable uninorm: an alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136.   DOI:10.1016/S0165-0114(98)00265-6
  10. B. De Baets: Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642.   DOI:10.1016/S0377-2217(98)00325-7
  11. Y. Dan, B. Q. Hu and J. Qiao: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.   DOI:10.1016/j.ijar.2019.04.009
  12. A. Dvořák and M. Holčapek: New construction of an ordinal sum of t-norms and t-conorms on bounded lattices. Inform. Sci. 515 (2020), 116-131.   DOI:10.1016/j.ins.2019.12.003
  13. J. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   DOI:10.1142/s0218488597000312
  14. X. J. Hua and W. Ji: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.   DOI:10.1016/j.fss.2020.11.005
  15. W. Ji: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.   DOI:10.1016/j.fss.2019.12.003
  16. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  17. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  18. K. Menger: Statistical metrics. Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535-537.   CrossRef
  19. M. Mas, S. Massanet, D. Ruiz-Aguilera and J. Torrens: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29 (2015), 1021-1037.   DOI:10.3233/IFS-151728
  20. Y. Ouyang and H. P. Zhang: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.   DOI:10.1016/j.fss.2019.05.006
  21. B. Schweizer and A. Sklar: Associative functions and statistical triangle inequalities. Pub. Math. Debrecen 8 (1961), 169-186.   CrossRef
  22. B. Schweizer and A. Sklar: Associative functions and abstract semigroups. Pub. Math. Debrecen 10 (1963), 69-81.   CrossRef
  23. S. Saminger: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.   DOI:10.1016/j.fss.2005.12.021
  24. X. R. Sun and H. W. Liu: Further characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 427 (2022), 96-108.   DOI:10.1016/j.fss.2021.01.006
  25. X. Wang and P. He: Some conditions under which the binary operators constructed by Çaylı are uninorms. J. Northwest Univ. (Nat. Sci. Ed.) 52 (2022), 4, 528-538 (in Chinese).   CrossRef
  26. A. F. Xie and S. J. Li: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104.   DOI:10.1016/j.fss.2019.04.020
  27. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  28. R. R. Yager: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175.   DOI:10.1016/S0165-0114(00)00027-0
  29. R. R. Yager: Defending against strategic manipulation in uninorm-based multi-agent decision making. Eur. J. Oper. Res. 141 (2002), 217-232.   DOI:10.1016/S0377-2217(01)00267-3
  30. B. Zhao and T. Wu: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.   DOI:10.1016/j.ijar.2020.12.008
  31. H. P. Zhang, M. Wu, Z. Wang, Y. Ouyang and B. De Baets: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121.   DOI:10.1016/j.fss.2020.10.016