Kybernetika 61 no. 4, 577-591, 2025

Constructing mixed uninorms on bounded lattices

Xiaofeng Tian and Aifang XieDOI: 10.14736/kyb-2025-4-0577

Abstract:

In this paper, we present the definition of mixed uninorms and propose several methods for constructing two special classes of mixed uninorms on bounded lattices through t-subnorms and t-superconorms. These methods generalize $\mathbb{U}_{\min},$ $\mathbb{U}_{\max},$ $\mathbb{U}_{\min}^{1}$ and $\mathbb{U}_{\max}^{0}$ on bounded lattices that have been previously discussed in the literature. Some examples are given to construct mixed uninorms on bounded lattices.

Keywords:

uninorms, bounded lattices, T-superconorm, T-subnorm

Classification:

03B52, 06Dxx

References:

  1. E. Asici and R. Mesiar: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.   DOI:10.1016/j.fss.2020.02.007
  2. G. Birkhoff: Lattice Theory. (Third edition.) Amer. Math. Soc., Rhode Island 1967.   CrossRef
  3. S. Bodjanova and M. Kalina: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica, 2014, pp. 61-66.   DOI:10.1365/s35128-014-0611-4
  4. B. De Baets and R. Mesiar: Triangular norm on product lattice, Fuzzy Sets Syst. 104 (1999), 61-75.   DOI:10.1016/S0165-0114(98)00259-0
  5. G. De Coomann and E. Kerre: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310.   DOI:10.1016/0039-6028(94)91392-7
  6. G. D. Çaylı: Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019) 111-139.   DOI:10.1016/j.ins.2019.03.007
  7. G. D. Çaylı: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264.   DOI:10.1016/j.ijar.2019.10.006
  8. G. D. Çaylı: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26.   DOI:10.1016/j.fss.2018.07.012
  9. G. D. Çaylı: Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets Syst. 395 (2020), 107-129.   DOI:10.1016/j.fss.2019.06.005
  10. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inform. Sci. 367 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  11. G. D. Çaylı: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158.   DOI:10.1080/03081079.2020.1863397
  12. D. Dubois and H. Prade: Fundamentals of Fuzzy Sets Kluwer Acad. Publ., Boston 2000.   CrossRef
  13. Y. X. Dan, B. Q. Hu and J. S. Qiao: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.   DOI:10.1016/j.ijar.2019.04.009
  14. Y. X. Dan and B. Q. Hu: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94.   DOI:10.1016/j.fss.2019.02.001
  15. J. C. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   CrossRef
  16. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, 2009.   CrossRef
  17. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43.   DOI:10.1016/j.ins.2010.08.040
  18. X. J. Hua and W. Ji: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.   DOI:10.1016/j.fss.2020.11.005
  19. X J. Hua, H. P. Zhang and Y. Ouyang: Note on Construction of uninorms on bounded lattices. Kybernetika 57 (2021), 2, 372-382.   DOI:10.14736/kyb-2021-2-0372
  20. P. He and X. P. Wang: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.   DOI:10.1016/j.ijar.2021.05.006
  21. W. Ji: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.   DOI:10.1016/j.fss.2019.12.003
  22. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  23. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Springer Science Business Media, 2013.   CrossRef
  24. Y. Ouyang and H. P. Zhang: Constructing uninorms via closure operators on a bounded lattice Fuzzy Sets Syst. 395 (2020), 93-106.   DOI:10.1016/j.fss.2019.05.006
  25. W. Pedrycz and K. Hirota: Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 41-52.   DOI:10.59876/a-rcx2-hba2
  26. B. Schweizer, A. Sklar and et al: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334.   DOI:10.2140/pjm.1960.10.313
  27. Z. Y. Xiu and X. Zheng: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108-535.   DOI:10.1016/j.fss.2023.108535
  28. R. R. Yager: Aggregation operators and fuzzy systems modeling. Fuzzy Sets Syst. 67 (1994), 129-145.   DOI:10.1016/0165-0114(94)90082-5
  29. R. R. Yager and A. Rybalov: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  30. H. P. Zhang, M. Wu, Z. Wang, Y. Ouyang and B. De Baets: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Systems 423 (2021), 107-121.   DOI:10.1016/j.fss.2020.10.016
  31. R. R. Yager: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175.   DOI:10.1016/S0165-0114(00)00027-0
  32. B. Zhao and T. Wu: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.   DOI:10.1016/j.ijar.2020.12.008