
KYBERNET IKA — VOLUME 6 1 ( 2 0 2 5 ) , NUMBER 4 , PAGES 5 7 7 – 5 9 1

CONSTRUCTING MIXED UNINORMS
ON BOUNDED LATTICES

Xiaofeng Tian and Aifang Xie

In this paper, we present the definition of mixed uninorms and propose several methods
for constructing two special classes of mixed uninorms on bounded lattices through t-subnorms
and t-superconorms. These methods generalize Umin, Umax, U1

min and U0
max on bounded lattices

that have been previously discussed in the literature. Some examples are given to construct
mixed uninorms on bounded lattices.
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1. INTRODUCTION

Schweizer and Skla [26] first proposed triangular conorms (t-conorms) and triangular
norms (t-norms) on the real unit interval [0,1]. These operators serve as generalizations
of disjunctive and conjunctive operations, respectively, within the context of classical
two-valued logical connectives. They are extensively utilized in fuzzy logic, fuzzy set
theory, multi-criteria decision support, and various branches of information science [12,
17, 28]. Rybalov and Yager [29] introduced uninorms on the real unit interval [0,1] to
generalize both triangular conorms and triangular norms, allowing their neutral or unit
elements to reside anywhere within the interval. Specifically, if the neutral element or
unit is 1, the uninorm corresponds to a t-norm, while if the neutral element or unit is 0,
it corresponds to a t-conorm. Fodor and Rybalov [15] demonstrated that uninorms are
integration of t-conorms and t-norms. This structural characteristic enables uninorms
to be applicable across various fields, including the aggregation of fuzzy information,
expert systems [25], fuzzy set theory [16], neural networks [31], and other areas such as
pseudo-analysis, measure theory, and fuzzy mathematical morphology.

Due to the fact that bounded lattices exhibit a greater degree of generality than real
unit intervals [0, 1], some scholars have expressed significant interest in uninorms defined
on bounded lattices. Mesiar and Karacal [22] were the first to construct uninorms on
bounded lattices in 2015. Since then, numerous researchers have employed various ways
of constructing uninorms, including derived from t-conorms and t-norms [1, 3, 6, 7, 8,
9, 10, 14, 13, 22], t-superconorms and t-subnorms [18, 21, 30], interior operators and
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closure operators [11, 19, 24, 32], additive generators [20], and pre-existing uninorms [27]
and so on. Notably, Zhang et al. [30] characterized two classes of uninorms (denoted
by Umax and Umin, respectively) and unified all related construction methods. We find
that among all the methods of uninorms on bounded lattices in the literature, almost all
the values of uninorms on A(e) = (e, 1]× [0, e)∪ [0, e)× (e, 1] are max or min except for
uninorms of U0

max and U1
min, respectively. Then we naturally propose a question: What

is the composition of uninorms on bounded lattices if the values of uninorms on A(e) is
mixed, i. e., U(x1, y1) = min(x1, y1) for some (x1, y1) ∈ A(e) and U(x2, y2) = max(x2, y2)
for (x2, y2) ∈ A(e). This is the motivation of the work.

In the current work, we introduce the definitions of two special types of mixed uni-
norms, i. e., U1

mix and U2
mix, on a bounded lattices and give their construction methods

under some conditions. Our methods can generalize Umax , Umin, U0
max and U1

min pro-
posed by Zhang et al. [30].

Below is a detailed outline of the work’s structure. The fundamental concepts and
pivotal conclusions pertaining to various aggregation functions on bounded lattices are
revisited and elucidated in Section 2. This section aims to provide a comprehensive
understanding of the essential characteristics and properties of uninorms. The definition
of two specific types of mixed uninorms on bounded lattices is introduced, along with
two innovative constructions for them, in Section 3. Finally, in the concluding section,
our analysis will culminate in several conclusions, which will not only summarize the key
findings of our study but also propose promising avenues for future scholarly pursuits in
this domain.

2. PRELIMINARIES

In this particular section of our discussion, we will first revisit the fundamental concept
of bounded lattices. Subsequently, building upon the foundation of bounded lattices,
we will delve into the notions and properties of several aggregation functions, with a
particular focus on the characterization and represention theorems of some classes of
uninorms within the context of bounded lattices.

Definition 2.1. (Birkhoff [2]) The binary relation ⩽, defined on the non-empty set
P , is designated as a partial order relation when it fulfilling the three fundamental
properties of antisymmetry, reflexivity, and transitivity. If for any two elements in P ,
there exists a greatest lower bound (also known as the infimum) and a least upper bound
(also known as the supremum), then (P,⩽,∧,∨) is said to be a lattice. For the sake
of convenience, such a lattice is referred to as a partially ordered lattice. If the lattice
(P,⩽,∧,∨) has a least element 0 and a greatest element 1, then P is called a bounded
lattice, and is denoted as (P,⩽,∧,∨, 0, 1). Unless otherwise specified, L will always refer
to a bounded lattice.

Definition 2.2. (Birkhoff [2]) Let m,n ∈ L be arbitrarily fixed with m ≤ n. The
subinterval of L is termed as [m,n] = {x ∈ L : m ≤ x ≤ n} . In the same way, we can
define [m,n), (m,n], (m,n). The notation Im denotes the subset of L comprising all
elements that are incomparable with m, formally denoted as Im = {x ∈ L | x ∥ m}.
Correspondingly, the set Im,n denotes the subset of L containing all elements that are
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simultaneously incomparable with both m and n, mathematically expressed as Im,n

= {x ∈ L | x ∥ m and x ∥ n}. Lastly, the concept of Inm, if applicable, represents the
subset of L where elements are incomparable with m yet maintain a comparability
relationship with n, that is, Inm = {x ∈ L | x ∥ m and x ∦ n}. Obviously, Imm = ∅ and
Im,m = Im.

Definition 2.3. (De Baets and Mesiar [4], De Coomann and Kerre [5]) Let [m,n] be a

subinterval of L. A binary function T : [m,n]
2 → [m,n] is termed as a triangular norm

(t-norm). if it fulfills associativity, commutativity, and monotonically increasing with
regard to each argument and T (n, y1) = T (y1, n) = y1 for all y1 ∈ [m,n]. The t-norm
T is called positive if T (x1, y1) > m for any x1, y1 ∈ (m,n].

Dually, a binary function S : [m,n]
2 → [m,n] is termed as a t-conorm on [m,n] if it

satisfies associativity, monotonicity, commutativity and S (x1,m) = S (m,x1) = x1 for
any x1 ∈ [m,n] . The t-conorm S is called positive if S (x1, y1) < n for any x1, y1 ∈ [m,n) .

Definition 2.4. (Zhang et al. [30]) Let S be a subset of L that has a greatest ( resp.
smallest) element. A binary function G : S2 → S is known as a t-superconorm (resp.
t-subnorm ) on S if it fulfills commutativity, monotonicity, associativity, and x1 ∨ y1 ≤
G (x1, y1) (resp. G (x1, y1) ≤ x1 ∧ y1) for any (x1, y1) ∈ S2

Definition 2.5. (Karaçal and Mesiar [22]) A binary operation U : L2 → L is known
as a uninorm on L with neutral or unit element e ∈ L \ {0, 1} if it fulfills associa-
tivity, commutativity, and monotonically increasing with regard to each argument and
U (e, x1) = x1 for any x1 ∈ L.

For a uninorm U with neutral or unit element e ∈ L\{0, 1} on L, we have that U |[0,e]2
is termed as a t-norm on [0, e] and U |[e,1]2 is termed as a t-conorm on [e, 1] . If U(0, 1) = 0
is satisfied, then U is a conjunctive uninorm; it is disjunctive, if U(0, 1) = 1.

Definition 2.6. (Zhang et al. [30]) Let a binary function U : L2 → L be a uninorm
on L with neutral or unit element e ∈ L \ {0, 1}

(i) If U (x0, y0) = y0 for all (x0, y0) ∈ (e, 1] × (L \ [e, 1]) holds, then U is termed as
Umin.

(ii) If U (x0, y0) = y0 for all (x0, y0) ∈ [0, e) × (L \ [e, 1]) holds, then U is termed as
Umax.

(iii) If U (x0, y0) = y0 for all (x0, y0) ∈ (e, 1) × (L \ [0, e]), and U (1, y0) = 1 for all
y0 ∈ (L \ [0, e]) holds, then U is termed as U1

min.

(iv) If U (x0, y0) = y0 for all (x0, y0) ∈ (0, e) × (L \ [0, e]), and U (0, y0) = 0 for all
y0 ∈ (L \ [0, e]) holds, then U is termed as U0

max.

Theorem 2.7. (Zhang et al. [30]) It is easy to see that U ∈ Umin if and only if U
can be characterized by the following formula, where S be a t-conorm on [e, 1], F be
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a t-subnorm on (L \ [e, 1]) .

U (x0, y0) =


S (x0, y0) (x0, y0) ∈ [e, 1]

2
,

y0 (x0, y0) ∈ [e, 1]× (L \ [e, 1]) ,
x0 (x0, y0) ∈ (L \ [e, 1])× [e, 1] ,

F (x0, y0) (x0, y0) ∈ ((L \ [e, 1]))2 .

(1)

Theorem 2.8. (Zhang et al. [30]) It is easy to see that U ∈ Umax if and only if U
can be characterized by the following formula, where T be a t-norm on [0, e] and G be
a t-superconorm on (L \ [0, e]) .

U (x0, y0) =


T (x0, y0) (x0, y0) ∈ [0, e]

2
,

y0 (x0, y0) ∈ [0, e]× (L \ [0, e]) ,
x0 (x0, y0) ∈ (L \ [0, e])× [0, e] ,

G (x0, y0) (x0, y0) ∈ (L \ [0, e])2 .

(2)

Theorem 2.9. (Zhang et al. [30]) Let U be the binary operation on L defined by the
following formula, where S be a t-conorm on [e, 1], F be a t-subnorm on (L \ [e, 1]) .

U (x0, y0) =


S (x0, y0) (x0, y0) ∈ [e, 1]

2
,

y0 (x0, y0) ∈ [e, 1)× ((L \ [e, 1])) ,
x0 (x0, y0) ∈ (L \ [e, 1])× [e, 1) ,
1 (x0, y0) ∈ {1} × (L \ [e, 1]) ∪ (L \ [e, 1])× {1} ,

F (x0, y0) (x0, y0) ∈ (L \ [e, 1])2 .

(3)

Then U ∈ U1
min if and only if S is positive.

Theorem 2.10. (Zhang et al. [30]) Let U be the binary operation on L defined by the
following formula, where T be a t-norm on [0, e], G be a t-superconorm on (L \ [0, e]) .

U (x0, y0) =


T (x0, y0) (x0, y0) ∈ [0, e]

2
,

y0 (x0, y0) ∈ (0, e]× (L \ [0, e]) ,
x0 (x0, y0) ∈ (L \ [0, e])× (0, e] ,
0 (x0, y0) ∈ {0} × (L \ [0, e]) ∪ (L \ [0, e])× {0} ,

G (x0, y0) (x0, y0) ∈ (L \ [0, e])2 .

(4)

Then U ∈ U0
max if and only if T is positive.

Theorem 2.11. (Klement et al. [23]) Let (L,⩽) be a totally ordered index set and
{(Ms, ∗s)}s∈I be a family of semigroups. Suppose that for all s, t ∈ I with s < t, it either
holds that (1) Ms ∩ Mt = ∅ or (2) Ms ∩ Mt = {mst},where mst is both the neutral
element of (Ms, ∗s) and the annihilator of (Mt, ∗t), and for all r ∈ I with s < r < t, it
holds that Mr = {mst}. Let M =

⋃
s∈I

Ms and define the binary operation ∗ on M by

x1∗y1 =


x1 ∗s y1 (x1, y1) ∈ M2

s,

x1 (x1, y1) ∈ Ms ×Mt and s < t,

y1 (x1, y1) ∈ Ms×Mt and t < s.

Then (M, ∗) is a semigroup, termed as the ordinal sum of{(Ms, ∗s)}s∈I .
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3. CONSTRUCTIONS OF MIXED UNINORMS

In the present segment of our discussion, we initiate an in-depth exploration of two
special types of mixed uninorms within the context of bounded lattices, i. e., U(x1, y1) =
min(x1, y1) for some (x1, y1) ∈ A(e) and U(x2, y2) = max(x2, y2) for some (x2, y2) ∈
A(e). We commence by providing precise definitions for these two classes of mixed
uninorms, namely, the first class of mixed uninorms and the second class of mixed
uninorms (see Definitions 3.1 and 3.9, respectively). Building upon these definitions,
we then propose a series of innovative construction methods for these two special types
of mixed uninorms. Our findings reveal that these construction methods possess the
capability to generalize and extend Umax, Umin, U0

max and U1
min proposed by Zhang et

al. [30], thereby contributing to a deeper understanding and broader appreciation of the
mathematical structures involved.

Definition 3.1. Let U : L2 → L be a uninorm with neutral or unit element e ∈ L\{0, 1}
on L. We call U a uninorm of the first class of mixed uninorms, if there exists t ∈ [e, 1]
such that the following conditions are satisfied:

(i) U (x0, y0) = x0 for all x0 ∈ [0, e) and y0 ∈ [e, t) ;

(ii) U (x0, y0) = y0 for all x0 ∈ [0, e) and y0 ∈ (t, 1];

(iii) U (x0, t) ∈ {x0, t} for all x0 ∈ [0, e) .

Here, we use U1
mix to denote the first class of mixed uninorms on bounded lattices.

Theorem 3.2. Let e ∈ L\{0, 1} and t ∈ [e, 1]. Suppose that F is a t-subnorm on
[0, e)∪ Ite, S is a t-conorm on [e, t] and R is a t-superconorm on L \ [0, t]. If Iet = ∅, then
the following operation U1 : L2 → L is a uninorm on L with neutral or unit element e,
where

U1 (x, y) =



S (x, y) (x, y) ∈ [e, t]
2
,

F (x, y) (x, y) ∈ ([0, e) ∪ Ite)
2
,

y (x, y) ∈ [e, t]× (L \ [e, t]) ,
x (x, y) ∈ (L \ [e, t])× [e, t] ,
y (x, y) ∈ ([0, e] ∪ Ite)× (L \ [0, t]) ,
x (x, y) ∈ (L \ [0, t])× ([0, e] ∪ Ite) ,

R (x, y) (x, y) ∈ (L \ [0, t])2 .

(5)

P r o o f . It is clearly established that U1 is commutative and that e serves as a neutral
element.

(i) Monotonicity. Let x1, y1, z1 ∈ L be arbitrarily fixed with x1 < y1. We need to prove
that U1 (x1, z1) ≤ U1 (y1, z1)
1. x1 ∈ [0, e)

1.1. y1 ∈ [0, e) ∪ Ite
1.1.1. z1 ∈ [0, e) ∪ Ite

U1(x1, z1) = F (x1, z1) ⩽ F (y1, z1) = U1(y1, z1).
1.1.2. z1 ∈ [e, t]

U1(x1, z1) = x1 < y1 = U1(y1, z1).
1.1.3. z1 ∈ L\ [0, t]

U1(x1, z1) = z1 = U1(y1, z1).
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Fig. 1. The structure of uninorm U1 in Theorem 3.2.

1.2. y1 ∈ [e, t]
1.2.1. z1 ∈ [0, e) ∪ Ite

U1(x1, z1) = F (x1, z1) ⩽ z1 = U1(y1, z1).
1.2.2. z1 ∈ [e, t]

U1(x1, z1) = x1 < y1 ⩽ S (y1, z1) = U1(y1, z1).
1.2.3. z1 ∈ L\ [0, t]

U1(x1, z1) = z1 = U1(y1, z1).
1.3. y1 ∈ L\ [0, t]

1.3.1. z1 ∈ [0, e) ∪ Ite
U1(x1, z1) = F (x1, z1) ⩽ x1 < y1 = U1(y1, z1).

1.3.2. z1 ∈ [e, t]
U1(x1, z1) = x1 < y1 = U1(y1, z1).

1.3.3. z1 ∈ L\ [0, t]
U1(x1, z1) = z1 ⩽ R (y1, z1) = U1(y1, z1).

2. x1 ∈ [e, t]. Then y1 ∈ [e, t] ∪ (t, 1].
2.1. y1 ∈ [e, t]

2.1.1. z1 ∈ [e, t]
U1(x1, z1) = S(x1, z1) ≤ S(y1, z1) = U1(y1, z1).

2.1.2. z1 ∈ L\ [e, t]
U1(x1, z1) = z1 = U1(y1, z1).

2.2. y1 ∈ (t, 1]
2.2.1. z1 ∈ [0, e) ∪ Ite

U1(x1, z1) = z1 < y1 = U1(y1, z1).
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2.2.2. z1 ∈ [e, t]
U1(x1, z1) = S (x1, z1) ≤ t < y1 = U1(y1, z1).

2.2.3. z1 ∈ L\ [0, t]
U1(x1, z1) = z1 ⩽ R (y1, z1) = U1(y1, z1).

3. x1 ∈ Ite. Then y ∈ [e, t] ∪ (L\ [0, t]) ∪ Ite.
3.1. y1 ∈ [e, t]

3.1.1. z1 ∈ [0, e) ∪ Ite
U1(x1, z1) = F (x1, z1) ⩽ z1 = U1(y1, z1).

3.1.2. z1 ∈ [e, t]
U1(x1, z1) = x1 < y1 ⩽ S (y1, z1) = U1(y1, z1).

3.1.3. z1 ∈ L\ [0, t]
U1(x1, z1) = z1 = U1(y1, z1).

3.2. y1 ∈ L\ [0, t]
3.2.1. z1 ∈ [0, e) ∪ Ite

U1(x1, z1) = F (x1, z1) ⩽ x1 < y1 = U1(y1, z1).
3.2.2. z1 ∈ [e, t]

U1(x1, z1) = x1 < y1 = U1(y1, z1).
3.2.3. z1 ∈ L\ [0, t]

U1(x1, z1) = z1 ⩽ R (y1, z1) = U1(y1, z1).
3.3. y1 ∈ Ite

3.3.1. z1 ∈ [0, e)∪Ite
U1(x1, z1) = F (x1, z1) ⩽ F (y1, z1) = U1(y1, z1).

3.3.2. z1 ∈ [e, t]
U1(x1, z1) = x1 < y1 = U1(y1, z1).

3.3.3. z1 ∈ L\ [0, t]
U1(x1, z1) = z1 = U1(y1, z1).

4. x1 ∈ Ie,t. Then y1 ∈ [t, 1] ∪ Ie,t.
4.1. z1 ∈ [0, e) ∪ Ite ∪ [e, t]

U1(x1, z1) = x1 < y1 = U1(y1, z1).
4.2. z1 ∈ L\ [0, t]

U1(x1, z1) = R (x1, z1) ⩽ R (y1, z1) = U1(y1, z1).
5. x1 ∈ (t, 1] . Then y1 ∈ (t, 1] .

5.1. z1 ∈ [0, e) ∪ Ite ∪ [e, t]
U1(x1, z1) = x1 < y1 = U1(y1, z1).

5.2. z1 ∈ L\ [0, t]
U1(x1, z1) = R (x1, z1) ⩽ R (y1, z1) = U1(y1, z1).

(ii) Associativity. Let G1 = ([0, e) ∪ Ite,F) and G2 = ([e, t] ,S) and G3 = (L \ [0, t] ,R).
Obviously, G1, G2, G3 are semigroups and (L,U1) is the ordinal sum of {Gi}i∈I , where
I = {1, 2, 3} is equipped with the order 3 < 1 < 2. Hence according to Theorem 2.11,
the associativity of U1 holds.
Consequently, we have the fact that U1 is a uninorm on L. □

Remark 3.3. If, in Theorem 3.2, we take t = 1, we can derive Umin, whose structure
corresponds to the previously mentioned (1).
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Remark 3.4. If, in Theorem 3.2, we take t = e, then Ite = Iet = ∅, Ie,t = Ie, and F is
a t-subnorm defined on [0, e)2. Combined with the neutral element property, U1 |[0,e]2
is a t-norm T. So we can derive Umax, whose structure corresponds to the previously
mentioned (2).

Fig. 2. The bounded lattice L1.

Example 3.5. Let us discuss the bounded lattice L1 = {0, a, b, c, d, e, f, t, g, h, j, k, 1}
depicted in Figure 2, the t-subnorm F : ([0, e) ∪ Ite)

2 → ([0, e) ∪ Ite) be given by F (x, y)

= x ∧ y ∧ a, the t-conorm S : [e, t]
2 → [e, t] be given by S (x, y) = x ∨ y, and R (x, y) =

x ∨ y ∨ k on L \ [0, t]. Based on Theorem 3.2, the construction of the uninorm U1 is as
shown in Table 1.

Theorem 3.6. Let e ∈ L \{0, 1} and t ∈ [e, 1]. Suppose that F is a t-subnorm on

([0, e) ∪ Ite)
2
, S is a positive t-conorm on [e, t] and R is a t-superconorm on L \ [0, t]. If

Iet = ∅, then the function U2 : L2 → L defined as follows is a uninorm on L with the
neutral or unit element e, where

U2 (x, y) =



S (x, y) (x, y) ∈ [e, t]
2
,

F (x, y) (x, y) ∈ ([0, e) ∪ Ite)
2
,

y (x, y) ∈ [e, t)× ([0, e) ∪ Ite) ,
x (x, y) ∈ ([0, e) ∪ Ite)× [e, t) ,
y (x, y) ∈ [0, t]× (L \ [0, t)) ,
x (x, y) ∈ (L \ [0, t))× [0, t] ,

R (x, y) (x, y) ∈ (L \ [0, t])2 .

(6)
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U1 0 a b c d e f t g h j k 1
0 0 0 0 0 0 0 0 0 g h j k 1
a 0 a 0 a a a a a g h j k 1
b 0 0 b 0 0 b b b g h j k 1
c 0 a 0 c a c c c g h j k 1
d 0 a 0 a d d d d g h j k 1
e 0 a b c d e f t g h j k 1
f 0 a b c d f f t g h j k 1
t 0 a b c d t t t g h j k 1
g g g g g g g g g g k k k 1
h h h h h h h h h k h k k 1
j j j j j j j j j k k j k 1
k k k k k k k k k k k k k 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tab. 1. The uninorm U1 in Example 3.5.

P r o o f . Assume that S(x, y) is not positive, then there exists (x1, y1) ∈ [e, t)2 such
that S(x1, y1) = t. Take z1 ∈ [0, t] \ [e, t]. Then U2(z1,U2(x1, y1) = U2(z1,S(x1, y1)) =
U2(z1, t) = t and U2(U2(x1, z1), y1) = U2(z1, y1) = z1. Since z1 ̸= t, the associativity
property of U2(x1, y1) is violated. Thus S is required to be a positive t-conorm on [e, t].
The remainder of the proof shares similarities with the proof of Theorem 3.2. □

Remark 3.7. (i) In Theorem 3.6, it must hold that t ̸= e. Otherwise, t = e, then
([0, t] \ [e, t]) = [0, e), L \ [0, t) = [e, 1]∪ Ie. Take x1 ∈ [0, e) and y1 = e ∈ [e, 1]∪ Ie.
Then U2(x, e) = e. So the neutral element property of U2(x, y) is violated.

(ii) The big difference between U1(x, y) and U2(x, y) is that U1(x1, t) = x1 and U2(x1, t)
= t for all x1 ∈ [0, e) ∪ Ite. Obviously, both U1 and U2 belong to the first class of
mixed uninorms U1

mix.

(iii) If, in Theorem 3.6, we take t = 1, we can derive U1
min, whose structure corresponds

to the previously mentioned (3).

Example 3.8. Let us discuss the bounded lattice L1 in Figure 2 and the t-subnorm
F : ([0, e) ∪ Ite)

2 → ([0, e) ∪ Ite) be given by F (x, y) = x ∧ y ∧ a and the t-conorm

S : [e, t]
2 → [e, t] be be given by S (x, y) = x ∨ y and taking R (x, y) = x ∨ y ∨ k on

L \ [0, t). According to Theorem 3.6, the construction of the uninorm U2 is as shown in
Table 2.

Definition 3.9. Let U : L2 → L be a uninorm with neutral or unit element e ∈ L\{0, 1}
on L. We call U a uninorm of the second class of mixed type uninorms if there exists
t ∈ [0, e], such that the following conditions are satisfied:
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U2 0 a b c d e f t g h j k 1
0 0 0 0 0 0 0 0 t g h j k 1
a 0 a 0 a a a a t g h j k 1
b 0 0 b 0 0 b b t g h j k 1
c 0 a 0 c a c c t g h j k 1
d 0 a 0 a d d d t g h j k 1
e 0 a b c d e f t g h j k 1
f 0 a b c d f f t g h j k 1
t t t t t t t t t g h j k 1
g g g g g g g g g g k k k 1
h h h h h h h h h k h k k 1
j j j j j j j j j k k j k 1
k k k k k k k k k k k k k 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tab. 2. The uninorm U2 in Example 3.8.

(i) U (x0, y0) = x0 for all x0 ∈ (e, 1] and y0 ∈ (t, e] ;

(ii) U (x0, y0) = y0 for all x0 ∈ (e, 1] and y0 ∈ [0, t);

(iii) U (t, y0) ∈ {t, y0} for all y0 ∈ (e, 1].

Here, we use U2
mix to denote the set of all the second class of mixed uninorms on

bounded lattices.
Similarly, we can take t ∈ [0, e] to obtain a uninorm in the second class of mixed

uninorms.

Theorem 3.10. Let e ∈ L \{0, 1} and t ∈ [0, e]. Suppose that F is a t-subnorm on
L \ [t, 1], T is a t-norm on [t, e] and R is a t-superconorm on [t, 1] \ [t, e]. If Iet = ∅, then
the function U3 : L2 → L is a uninorm on L with neutral or unit element e, where

U3 (x, y) =



T (x, y) (x, y) ∈ [t, e]
2
,

R (x, y) (x, y) ∈ ([t, 1] \ [t, e])2 ,
y (x, y) ∈ [t, e]× (L \ [t, e]) ,
x (x, y) ∈ (L \ [t, e])× [t, e] ,

y (x, y) ∈ ([t, 1] \ [t, e])× ((L \ [t, 1])) ,
x (x, y) ∈ ((L \ [t, 1]))× ([t, 1] \ [t, e]) ,

F (x, y) (x, y) ∈ (L \ [t, 1])2 .

(7)

P r o o f . It can be demonstrated using a similar method to that employed in the proof
of Theorem 3.2. □
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Fig. 3. The uninorm U3 in Theorem 3.10.

Fig. 4. The bounded lattice L2.
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U3 0 a b c d t f e g h j k 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 a a a a a a a a a a a a
b 0 a b a a b b b b b b b b
c 0 a a c a c c c c c c c c
d 0 a a a d d d d d d d d d
t 0 a b c d t t t g h j k 1
f 0 a b c d t f f g h j k 1
e 0 a b c d t f e g h j k 1
g 0 a b c d g g g g k 1 k 1
h 0 a b c d h h h k k 1 k 1
j 0 a b c d j j j 1 1 j 1 1
k 0 a b c d k k k k k 1 k 1
1 0 a b c d 1 1 1 1 1 1 1 1

Tab. 3. The uninorm U3 in Example 3.12.

Remark 3.11. (i) If, in Theorem 3.10, we take t = e, then Ite = ∅, Ie,t = Ie, and
U3(x1, e) = x1 for all x1 ∈ L and U3(e, y1) = y1 for all y1 ∈ L. In this case, U3 limited
on [e, 1]2 is a t-conorm. So in this way, we can derive the uninorm Umin, whose structure
corresponds to the previously mentioned (1).

(ii) If, in Theorem 3.10 we take t = 0, then we can derive the uninorm Umax, whose
structure corresponds to the previously mentioned (2).

Example 3.12. Let L2 = {0, a, b, c, d, e, f, t, g, h, j, k, 1} be depicted in Figure 4, t-

subnorm F : (L \ [t, 1])2 → (L \ [t, 1]) be given by F (x, y) = x ∧ y ∧ a, and t-norm

T : [t, e]
2 → [t, e] be given by T (x, y) = x ∧ y, and R (x, y) = x ∨ y ∨ k on ([t, 1] \ [t, e]).

Based on Theorem 3.10, the construction of the uninorm U3 is as shown in Table 3.

Theorem 3.13. Let e ∈ L \{0, 1} and t ∈ [0, e). Suppose that F is a t-subnorm on

L \ [t, 1], T is a positive t-norm on [t, e] and R is a t-superconorm on ((e, 1] ∪ Ite)
2
. If

Iet = ∅, then the function U4 : L2 → L defined as follows is a uninorm on L with neutral
or unit element e, where [t, 1] = [t, e] ∪ (e, 1] ∪ Ite and the structure is as follows:

U4 (x, y) =



T (x, y) (x, y) ∈ [t, e]
2
,

R (x, y) (x, y) ∈ ((e, 1] ∪ Ite)
2
,

y (x, y) ∈ (t, e]× ((e, 1] ∪ Ite) ,
x (x, y) ∈ ((e, 1] ∪ Ite)× (t, e],
y (x, y) ∈ [t, 1]× (L \ (t, 1]) ,
x (x, y) ∈ (L \ (t, 1])× [t, 1],

F (x, y) (x, y) ∈ (L \ [t, 1])2 .

(8)

P r o o f . It can be demonstrated using a similar method to that employed in the proof
of Theorem 3.6. □
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Remark 3.14. The big difference between U3(x, y) and U4(x, y) is that U3(x1, t) = x1

and U4(x1, t) = t for all x1 ∈ [t, 1] \ [t, e]. Obviously, both U3 and U4 are uninorms of
the second class of mixed uninorms U2

mix.

Remark 3.15. In Theorem 3.13, it must hold that t ̸= e. Otherwise, t = e, then
([t, 1] \ [t, e]) = (e, 1], L \ (t, 1] = [0, e]∪ Ie. Take x1 ∈ (e, 1] and y1 = e ∈ [0, e]∪ Ie. Then
U4(x1, e) = e. So the neutral element property of U4(x, y) is violated.

Remark 3.16. If, in Theorem 3.13, we take t = 0, then we can derive the uninorm
U0

max, whose structure corresponds to the previously mentioned (4).

Example 3.17. Let us discuss the bounded lattice L2 in Figure 4 and the t-subnorm
F : (L \ (t, 1])2 → (L \ (t, 1]) be given by F (x, y) = x ∧ y ∧ a and the t-norm T : [t, e]

2

→ [t, e] be be given by T (x, y) = x ∧ y and taking R (x, y) = x ∨ y ∨ k on ([t, 1] \ [t, e]).
Based on Theorem 3.13, the construction of the uninorm U4 is as shown in Table 4.

U4 0 a b c d t f e g h j k 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 a a a a a a a a a a a a
b 0 a b a a a b b b b b b b
c 0 a a c a a c c c c c c c
d 0 a a a d a d d d d d d d
t 0 a a a a t t t t t t t t
f 0 a b c d t f f g h j k 1
e 0 a b c d t f e g h j k 1
g 0 a b c d t g g g k 1 k 1
h 0 a b c d t h h k k 1 k 1
j 0 a b c d t j j 1 1 j 1 1
k 0 a b c d t k k k k 1 k 1
1 0 a b c d t 1 1 1 1 1 1 1

Tab. 4. The uninorm U4 in Example 3.17.

4. CONCLUSION

In this paper, we commence by presenting precise and apt definitions for the first and
second types of mixed uninorms (i. e.,U1

mix,U2
mix) within the context of bounded lattices.

Building upon these definitions, we delve into innovative construction methods for these
two types of mixed uninorms under specific bounded lattices, The first type of mixed
uninorms, denoted as U1

mix, is constructed primarily using t-conorm and t-subnorm
as its building blocks, while the second type, U2

mix, is constructed using t-norm and
t-superconorm as its building blocks. Intriguingly, we discover that these construction
methods can generalize Umax, Umin, U0

max and U1
min on bounded lattices, which have been

previously explored in the literature. To illustrate the practicality of our methods, we
provide several examples demonstrating how to construct mixed uninorms on bounded
lattices. For future research endeavors, our primary objectives are twofold: Firstly,
we aim to delve deeply into and explore innovative construction methods for mixed
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uninorms within the broader context of general bounded lattices. Secondly, we intend
to focus on the characterization of mixed uninorms on bounded lattices. By pursuing
these objectives, we hope to contribute significantly to the advancement of this field and
to foster new insights and discoveries in the process.
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[9] G.D. Çaylı: Uninorms on bounded lattices with the underlying t-norms and t-conorms.
Fuzzy Sets Syst. 395 (2020), 107–129. DOI:10.1016/j.fss.2019.06.005
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