Kybernetika 61 no. 4, 554-576, 2025

Quasi-Projection for a class of uninorms (2-uninorms)

Li Wen-Huang, Fan Hui-Zhen and Qin FengDOI: 10.14736/kyb-2025-4-0554

Abstract:

In 2021, Jayaram et al. demonstrated that a~property called \emph{Quasi-Projectivity} $(QP)$ is a~necessary condition for Clifford's relation to produce a partial order. Furthermore, their research revealed that although all triangular norms and triangular conorms satisfy $(QP)$ and thus can generate posets, their generalized operator, uninorms, does not always possess this property, resulting in not all uninorms being able to generate a poset. In this work, we first investigate the satisfaction of $(QP)$ for uninorms with continuous underlying operators, concluding that such uninorms are capable of yielding partial orders if and only if they are locally internal in $A(e)$, and the resulting partially ordered set is a chain. Based on this, we further explore the performance of inducing partial orders within the framework of 2-uninorms, and the results show that it is entirely determined by the underlying uninorms.

Keywords:

triangular norms, uninorms, triangular conorms, Quasi-Projectivity

Classification:

03B52, 03E72, 94D05

References:

  1. P. Akella: Structure of n-uninorms. Fuzzy Sets Syst. 158 (2007), 1631-1651.   DOI:10.1016/j.fss.2007.02.015
  2. C. Alsina, M. Frank and B. Schweizer: Associative Functions: Triangular Norms and Copulas. World Scientific, New Jersery 2006.   CrossRef
  3. E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.   DOI:10.1016/j.fss.2016.12.004
  4. A. H. Clifford: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646.   DOI:10.2307/2372706
  5. B. Davey and H. Priestley: Introduction to Lattices and Order. Cambridge University Press, Cambridge 1990.   CrossRef
  6. P. Drygaś: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157.   DOI:10.1016/j.fss.2009.09.017
  7. Ü. Ertu\v{g}rul, M. N. Kesicio\v{g}lu and F. Karacal: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.   DOI:10.1016/j.ins.2015.10.019
  8. J. C. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.   DOI:10.1142/S0218488597000312
  9. V. K. Gupta and B. Jayaram: Order based on associative operations. Inform. Sci. 566 (2021), 326-346.   DOI:10.1016/j.ins.2021.02.020
  10. V. K. Gupta and B. Jayaram: On the pecking order between those of Mitsch and clifford. Math. Slovaca 73 (2023), 565-582.   DOI:10.1515/ms-2023-0042
  11. V. K. Gupta and B. Jayaram: Clifford's order obtained from uninorms on bounded lattices. Fuzzy Sets Syst. 462 (2023), 108384.   DOI:10.1016/j.fss.2022.08.016
  12. V. K. Gupta and B. Jayaram: Importation lattices. Fuzzy Sets Syst. 405 (2021), 1-17.   DOI:10.1016/j.fss.2020.04.003
  13. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  14. M. N. Kesicio\v{g}lu, F. Karaçal and R. Mesiar: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.   DOI:10.1016/j.fss.2014.10.006
  15. M. N. Kesicio\v{g}lu, Ü. Ertu\v{g}rul and F. Karaçal: An equivalence relation based on the U-partial order. Inf. Sci. 411 (2017), 39-51.   DOI:10.1016/j.ins.2017.05.020
  16. M. N. Kesicio\v{g}lu, Ü. Ertu\v{g}rul and F. Karaçal: Some notes on U-partial order. Kybernetika 55 (2019), 518-530.   DOI:10.14736/kyb-2019-3-0518
  17. F. Karaçal and M. N. Kesicio\v{g}lu: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.   CrossRef
  18. G. Li, Z. B. Li and J. Wang: Some results on the weak dominance relation between ordered weighted averaging operators and T-norms. Kybernetika 60 (2024), 379-393.   DOI:10.14736/kyb-2024-3-0379
  19. W. H. Li, F. Qin and Y. Y. Zhao: A note on uninorms with continuous underlying operators. Fuzzy Sets Syst. 386 (2020), 36-47.   DOI:10.1016/j.fss.2019.03.007
  20. Z. Q. Liu: Cliffords order based on non-commutative operations. Iran. J. Fuzzy Syst. 21 (2024), 77-90.   DOI:10.22111/IJFS.2024.47502.8363
  21. M. Mas, M. Monserrat, D. Ruiz-Aguilera and J. Torrens: A survey on the existing classes of uninorms. J. Intell. Fuzzy Syst. 29 (2015) 1021-1037.   DOI:10.3233/IFS-151728
  22. A. Mesiarová-Zemánková: Characterization of uninorms with continuous underlying t-norm and t-conorms by means of ordinal sum construction. Int. J. Approx. Reason. 83 (2017), 176-192.   DOI:10.1016/j.ijar.2017.01.007
  23. A. Mesiarová-Zemánková: Characterization of n-uninorms with continuous underlying functions via z-ordinal sum construction. Int. J. Approx. Reason. 133 (2021), 60-79.   DOI:10.1016/j.ijar.2021.03.006
  24. H. Mitsch: A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384-388.   DOI:10.2307/2046222
  25. K. S. Nambooripad: The natural partial order on a regular semigroup. Proc. Edinb. Math. Soc. 23 (1980), 249-260.   DOI:10.1017/S0013091500003801
  26. K. Nanavati and B. Jayaram: Order from non-associative operations. Fuzzy Sets Syst. 467 (2023), 108484.   DOI:10.1016/j.fss.2023.02.005
  27. J. S. Qiao: On binary relations induced from overlap and grouping functions. Int. J. Approx. Reason. 106 (2019).   DOI:10.1016/j.ijar.2019.01.006
  28. F. Qin and L. Fu: A characterization of uninorms not internal on the boundary. Fuzzy Sets Syst. 469 (2023), 108641.   DOI:10.1016/j.fss.2023.108641
  29. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  30. Y. Su, F. Qin and B. Zhao: On the inner structure of uninorms with continuous underlying operators. Fuzzy Sets Syst. 403 (2021), 1-9.   DOI:10.1016/j.fss.2019.12.011
  31. Y. Su, W. W. Zong and P. Drygas: Properties of uninorms with the underlying operation given as ordinal sums. Fuzzy Sets Syst. 357 (2019), 47-57.   DOI:10.1016/j.fss.2018.04.011
  32. W. W. Zong, Y. Su, H. W. Liu and B. De Baets: On the structure of 2-uninorms. Inform. Sci. 467 (2018), 506-527.   DOI:10.1016/j.ins.2018.08.008