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QUASI-PROJECTION FOR A CLASS OF UNINORMS
(2-UNINORMS)

Wen-Huang Li, Hui-Zhen Fan, and Feng Qin

In 2021, Jayaram et al. demonstrated that a property called Quasi-Projectivity (QP ) is
a necessary condition for Clifford’s relation to produce a partial order. Furthermore, their re-
search revealed that although all triangular norms and triangular conorms satisfy (QP ) and
thus can generate posets, their generalized operator, uninorms, does not always possess this
property, resulting in not all uninorms being able to generate a poset. In this work, we first
investigate the satisfaction of (QP ) for uninorms with continuous underlying operators, con-
cluding that such uninorms are capable of yielding partial orders if and only if they are locally
internal in A(e), and the resulting partially ordered set is a chain. Based on this, we further
explore the performance of inducing partial orders within the framework of 2-uninorms, and
the results show that it is entirely determined by the underlying uninorms.
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1. INTRODUCTION

Following the pioneering works of Nambooripad [25], Mitsch [24] and others on obtaining
orders over semigroups, a substantial body of literature proposing orders based on fuzzy
connectives has emerged in recent years [3, 12, 15, 20, 26, 27]. Inspired by Clifford’s
work [4], it was Karaçal and Kesicioǧlu in [17] first defined the order based on triangular
norm T on a bounded lattice L in the following way:

x ⪯T y ⇐⇒ T (ℓ, y) = x, for some ℓ ∈ L. (1)

Notice that uninorms are a generalization of triangular norms and triangular conorms.
Inspired by the aforementioned work and aiming to elucidate the dual behavior of the
conjunction and disjunction of a unninorm U in different parts, Ertuǧrul et al. made
an appropriate modification based on Eg. (1) and introduced the following order on
a bounded lattice L [7],

x ⊑U y ⇔

 if x, y ∈ [0, e] and U(ℓ, y) = x for some ℓ ∈ [0, e] or,
if x, y ∈ [e, 1] and U(ζ, x) = y for some ζ ∈ [e, 1] or,
if (x, y) ∈ L2 \ {[0, e]2 ∪ [e, 1]2} and x ≤ y,
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where e is the neutral element of U . Although the above relation can generate a partially
ordered set for any U , it has two limitations. Firstly, the definition of the relation
lacks uniformity and relies on the operation of uninorms in different regions. Secondly,
Proposition 3 in [7] shows that if x ⊑U y then x ≤ y, which prevents us from obtaining a
more abundant ordered theoretical structure from U than the initial bounded lattice L.

In order to overcome the above awkward situations, it is noted that among the vari-
ous definitions of order proposed within the framework of associative aggregation oper-
ators, only the order given in Eg. (1) or its dual form do not depend on the subdomain
of its arguments. Based on this fact, in 2021, Gupta and Jayaram [9] explored the
order-theoretic behavior of associative operator F by substituting T in Eg. (1) with the
following method:

x ⪯F y ⇐⇒ F (ℓ, y) = x, for some ℓ ∈ L. (2)

In literature the above relation is well-known as the Clifford’s relation, and the resulting
partially ordered set is abbreviated as F -poset to reflect the relation with F . To ensure
the relation given in Eg. (2) is a partial order, the authors introduced two technical
properties called Local Left Identity (LLI) and Quasi-Projection (QP ) respectively, and
conducted their research primarily focusing on common types of uninorms defined on
[0, 1]2 [9] and uninorms Umin ∪ Umax constructed on bounded lattices [11]. Essentially,
for a uninorm, verifying the satisfaction of (QP ) is a crucial step in making its under-
lying set to become a poset. It demonstrates that all triangular norms and triangular
conorms satisfy (QP ), thus enabling them to generate partially ordered sets, but their
generalized operator uninorms are not always equipped with this property, resulting in
not all uninorms being able to give a partial order. Specifically, in the research process
within the framework of common families of uninorms on [0, 1]2, the authors in [9] found
that uninorm U belongs to Ulin can successfully give rise to a partial order, but Urep

and Ucos class uninorms fail to possess this capability. Subsequently, in the concluding
remarks of the article, the authors proposed a question that how is structure of the
partially ordered set obtained by U is related to the posets obtained by its underlying
operators.

Linking partially ordered sets with an algebra can help us intuitively explain algebraic
concepts, much like how the graph of a function allows us to better understand algebraic
expressions [26]. Furthermore, it can also aid us in gaining deeper insights into the
essence of algebra and acquiring further valuable understanding. A well-known example
is Clifford’s influential result, which states that if the Clifford’s relation produces a
total order, then the commutative semigroup can be described as an ordinal sum of
subsemigroups [4]. For this reason, following the theme, this work further investigates
the satisfaction of (QP ) within the framework of uninorms with continuous underlying
operators. It is concluded that such uninorms are capable of producing partial orders if
and only if they are locally internal in A(e), and the resulting partial order is a chain. For
those uninorms that are not locally internal in A(e), we provide a simple and intuitive
modification method, ensuring that the modified operators are not only uninorms but
also capable of generating posets. Based on this, we further explore the conditions under
which 2-uninorms yield a poset, and the results indicate that it is entirely determined
by the underlying uninorms.
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The structure of this article is as follows. In Section 2, we introduce some basic con-
cepts and notations related to order theory and uninorms (2-uninorms). Sections 3 and
4 focus on uninorms (2-uninorms) with continuous underlying operators, respectively
exploring the order-theoretic behavior of these two types of operators. Finally, Section
5 presents the conclusion of the article and an outlook on future work.

2. PERLIMINARIES

In this section, to ensure the article remains as self-contained as possible, we briefly
recall some relevant definitions and results utilized herein. For further details, readers
are recommended to refer to [2, 5, 8, 13].

Definition 2.1. (Davey and Priestley [5]) Let P ̸= ∅. A partial order on P is a binary
relation on P such that, for all p, q, r ∈ P , the following properties hold:

(i) Reflexivity: p ≤ p.

(ii) Antisymmetry: If p ≤ q and q ≤ p, then p = q.

(iii) Transitivity: If p ≤ q and q ≤ r, then p ≤ r.

Definition 2.2. (Davey and Priestley [5]) Let (P,≤) be a poset.

(i) An element p in P is said to be

(a) the greatest element if for every element q in P we have p ≥ q.

(b) the least element if for every element q in P we have p ≤ q.

(ii) A pair of elements p, q ∈ P is said to be comparable, denoted p ∼ q, if either p ≤ q
or q ≤ p. Otherwise, it is denoted by p ≁ q.

(iii) P is said to be a chain if for any p, q ∈ P either p ≤ q or q ≤ p, i. e., p ∼ q for
every p, q ∈ P .

Next, two crucial properties in the semigroup, abbreviated as (LLI) and (QP ), are
introduced, which play a pivotal role in determining whether ⪯F constitutes a partial
order [9, 10].

Definition 2.3. (Gupta and Jayaram [9]) Let P ̸= ∅ and F : P × P → P . F is said
to satisfy the

(i) Local Left Identity property, if for every x ∈ P , there exists an ℓ ∈ P such that
F (ℓ, x) = x, i. e., for every x ∈ P ,

Ax = {ς ∈ P |F (ς, x) = x} ≠ ∅. (LLI )

(ii) Quasi-Projection property, if for any x, y, z ∈ P ,

F (x, F (y, z)) = z ⇒ F (y, z) = z. (QP)

Theorem 2.4. (Gupta and Jayaram [9]) Let P ̸= ∅ and F : P × P → P be an
associative operator. Let the relation ⪯F on P be defined by Eg. (2). Then the following
are equivalent:
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(i) (P,⪯F ) is a poset.

(ii) F satisfies both (LLI) and (QP ).

Suppose that F : P × P → P is associative and satisfies (LLI) and (QP ). Then the
relation ⪯F is a partial order on P . To emphasize that the partially ordered set (P,⪯F )
is derived from F , we usually refer to it as an F -poset.

Definition 2.5. A binary operator F : [0, 1]2 → [0, 1] in region D is said to be locally
internal if F (x, y) ∈ {x, y} for each (x, y) ∈ D.

Definition 2.6. (Klement et al. [13]) A binary operator T (S) : [0, 1]2 → [0, 1] is called
a triangular norm, if it is associative, commutative, increasing in each variable and 1(0)
is the neutral element.

Next, we will introduce the generalized operator of triangular norms and triangular
conorms, known as uninorms, which has consistently captured the attention of scholars
within the fuzzy community [16, 18, 28].

Definition 2.7. (Yager and Rybalov [29]) A binary operator U : [0, 1]2 → [0, 1] is
called a uninorm if it is associative, commutative, increasing in each variable and there
exists an element e ∈ [0, 1] called neutral element, such that U(e, x) = x for all x ∈ [0, 1].

For a uninorm U with a neutral element e ∈ (0, 1), it acts as a triangular norm T
on [0, e]2 and as a triangular conorm S on [e, 1]2, while in the remaining area A(e), its
value lies between the minimum and maximum. Therefore, T and S are referred to as
the underlying operators of U . Any uninorm U satisfies that U(0, 1) ∈ {0, 1} and it is
called conjunctive when U(0, 1) = 0 and disjunctive when U(0, 1) = 1. The different
families of uninorms that will be used in the article are described as follows:

(i) Umin(Umax) – uninorms whose values in A(e) are given by the smaller (larger) of
two variables.

(ii) Ulin – locally interval uninorms, i. e., U(x, y) ∈ {x, y} on A(e).

(iii) Urep – uninorms continuous on [0, 1]2\{(0, 1), (1, 0)}. Fodor et al. proved that [8]
such uninorms are strictly increasing in (0, 1)2. For any U ∈ Urep, it holds that
U(0, 1) = 0 for all x ∈ [0, 1) and U(x, 1) = 1 for all x ∈ (0, 1].

(iv) Ucos – uninorms continuous on the open unit square (0, 1)2. Based on the structural
characteristics of this type of uninorm, it can be concluded that any representable
uninorm U is a particular form among the members of Ucos [21].

(v) Ucts – uninorms with continuous underlying operators. Mesiarová-Zemánková and
Su et al. have achieved a series of profound research results in exploring the
characteristic structures of such uninorms [22, 30, 31].

For the sake of convenience, the set of uninorms with continuous underlying operators
and have neutral element e in this article is denoted as U

cts(e)
. Suppose that U ∈ U

cts(e)

and α is an idempotent element of U , then it obtained in [22] that U(α, ·) is locally
internal on [0, 1].
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Definition 2.8. (Akella [1]) Let k ∈ (0, 1), e1 ∈ [0, k] and e2 ∈ [k, 1]. A binary operator
G : [0, 1]2 → [0, 1] is called a 2-uninorm if it is associative, commutative, increasing and
fulfills

(i) G(e1, x) = x for each x ∈ [0, k].

(ii) G(e2, x) = x for each x ∈ [k, 1].

For any fixed 2-uninorm G with parameters e1, k, e2, it works as a uninorm U1 with
neutral element e1

k on [0, k]2 and as a uninorm U2 with neutral element e2−k
1−k on [k, 1]2.

Therefore, U1 and U2 are referred to as the underlying uninorms of G. In this sense, in
this article the 2-uninorm G is denoted as G = ⟨U1, U2⟩. If the underlying operators of
U1 and U2 are continuous, then we say G have continuous underlying operators and it
is denoted by Gcts(e1,k,e2) in this paper. Moreover, Akella and Zong et al. stated that
2-uninorms can be divided into the following five exhaustive and mutually exclusive
families [1, 32].

(i) The family of 2-uninorms with G(0, 1) = k, denoted by Gk.

(ii) The family of 2-uninorms with G(0, 1) = 0 and G(1, k) = k, denoted by Gc,k.

(iii) The family of 2-uninorms with G(0, 1) = 1 and G(0, k) = k, denoted by Gd,k.

(iv) The family of 2-uninorms with G(0, 1) = 0 and G(1, k) = 1, denoted by Gc,1.

(v) The family of 2-uninorms with G(0, 1) = 1 and G(0, k) = 0, denoted by Gd,0.

The results presented below illustrate the structures of the aforementioned five classes
of 2-uninorms.

Proposition 2.9. (Akella [1]) A binary operaor G : [0, 1]2 → [0, 1] is a 2-uninorm with
G ∈ Gk if and only if G is expressed as

G(x, y) =


kU1(

x
k ,

y
k ), if (x, y) ∈ [0, k]2,

k + (1− k)U2(
x−k
1−k ,

y−k
1−k ) if (x, y) ∈ [k, 1]2,

k, otherwise,

where U1 is a disjunctive uninorm with neutral element e1
k and U2 is a conjunctive

uninorm with neutral element e2−k
1−k .

Proposition 2.10. (Zong et al. [32]) A binary operator G : [0, 1]2 → [0, 1] is a 2-
uninorm with G ∈ Gc,k if and only if G is expressed as

G(x, y) =


kU1(

x
k ,

y
k ), if (x, y) ∈ [0, k]2,

k + (1− k)U2(
x−k
1−k ,

y−k
1−k ), if (x, y) ∈ [k, 1]2,

kU1(
min{x,y}

k , 1), otherwise,

where U1 and U2 are conjunctive uninorms with neutral element e1
k and e2−k

1−k respectively.
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Proposition 2.11. (Zong et al. [32]) A binary operator G : [0, 1]2 → [0, 1] is a 2-
uninorm with G ∈ Gd,k if and only if G is expressed as

G(x, y) =


kU1(

x
k ,

y
k ), if (x, y) ∈ [0, k]2,

k + (1− k)U2(
x−k
1−k ,

y−k
1−k ), if (x, y) ∈ [k, 1]2,

k + (1− k)U2(
max{x,y}−k

1−k , 0), otherwise,

where U1 and U2 are disjunctive uninorms with neutral element e1
k and e2−k

1−k respectively.

Proposition 2.12. (Zong et al. [32]) A binary operator G : [0, 1]2 → [0, 1] is a 2-
uninorm with G ∈ Gc,1 ∪ Gd,0, then there exist uninorms U1 and U2 with neutral
element e1

k and e2−k
1−k respectively, such that

G(x, y) =


kU1(

x
k ,

y
k ), if (x, y) ∈ [0, k]2,

k + (1− k)U2(
x−k
1−k ,

y−k
1−k ), if (x, y) ∈ [k, 1]2,

kU1(
min{x,y}

k , 1), if min{x, y} ≤ k ≤ max{x, y} ≤ e2,

k + (1− k)U2(
max{x,y}−k

1−k , 0), if e1 ≤ min{x, y} ≤ k ≤ e2 ≤ max{x, y},

and if min{x, y} ≤ e1 ≤ e2 ≤ max{x, y}, then G(x, y) ∈ [0, e1] ∪ {k} ∪ [e2, 1].

Remark 2.13. (Zong et al. [32]) For the structures of 2-uninorms described above,
the following observations are valid.

(i) If G ∈ Gc,k, then G(x, y) = G(x, k) for all (x, y) ∈ [0, k) × [k, 1], and G(x, y) =
G(k, y) for all (x, y) ∈ [k, 1]× [0, k).

(ii) If G ∈ Gd,k, then G(x, y) = G(k, y) for all (x, y) ∈ [0, k) × [k, 1], and G(x, y) =
G(x, k) for all (x, y) ∈ [k, 1]× [0, k).

(iii) If G ∈ Gc,1 ∪Gd,0, then we have

(a) G(x, y) = G(x, k) for all (x, y) ∈ [0, k)× [k, e2], and G(x, y) = G(k, y) for all
(x, y) ∈ [k, e2]× [0, k).

(b) G(x, y) = G(k, y) for all (x, y) ∈ [e1, k)× [e2, 1], and G(x, y) = G(x, k) for all
(x, y) ∈ [e2, 1]× [e1, k).

3. QUASI-PROJECTION FOR UNINORMS WITH CONTINUOUS UNDERLYING
OPERATORS

Given a fixed uninorm U ∈ U
cts(e)

, the (LLI) property naturally holds. Therefore,
as described in theorem 2.4, the key to making (P,⪯U ) a partially ordered set lies in
verifying the validity of (QP ) Based on the structural characteristics of U in A(e), the
discussions can be divided into two situations as follows.

(i) U is locally internal in A(e).

(ii) U is not locally internal in A(e).
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For the case where U is locally internal in A(e), the satisfaction of (QP ) has been
discussed in [10], and a positive result has been obtained. Due to the necessity of the
context, we present the conclusion here.

Proposition 3.1. (Gupta and Jayaram [9]) Suppose that U ∈ Ulin, then U satisfies
(QP).

Next, let us focus on situation (ii) that U is not locally internal in A(e). According
to Lemma 3.1 in [19], it is obtained that for any U ∈ U

cts(e)
, either there exists a

representable uninorm centered around point (e, e) (namely, there exist a ∈ [0, e) and
b ∈ (e, 1] such that U is a representable uninorm R✠ on [a, b]2.), or there does not exist
a representable uninorm centered around point (e, e). Within this framework, there are
two considerations regarding the observations on the satisfaction of (QP ).

Lemma 3.2. Suppose that U ∈ U
cts(e)

with a representable uninorm centered around
point (e, e), then U does not satisfy (QP ).

P r o o f . Given that U ∈ U
cts(e)

with a representable uninorm centered around point
(e, e), then we know there exist a ∈ [0, e) and b ∈ (e, 1] such that U is a representable
uninorm R✠ on [a, b]2. That is, U(x, y) = a+ (b− a)R✠(x−a

b−a ,
y−a
b−a ) for all x, y ∈ [a, b]2.

Taking y1 ∈ (a, e), then according to the fact that

U(y1, a) = a+ (b− a)R✠(
y1 − a

b− a
,
a− a

b− a
) = a,

and

U(y1, b) = a+ (b− a)R✠(
y1 − a

b− a
,
b− a

b− a
) = b,

one obtains that there exists some z1 ∈ (a, b) such that U(y1, z1) = e. Now, let us take
x = z1, then we have U(x, U(y1, z1)) = U(x, e) = z1. That is, the antecedent of (QP ) is
established. However, according to R✠(y1−a

b−a , z1−a
b−a ) < R✠( e−a

b−a ,
z1−a
b−a ) = z1−a

b−a we obtain

that U(y1, z1) = a + (b − a)R✠(y1−a
b−a , z1−a

b−a ) < z1, which means that the consequent of
(QP ) is not valid. Therefore, U does not satisfy (QP ). □

The following conclusion already obtained in [9] can be directly achieved through
Lemma 3.2.

Corollary 3.3. Let U ∈ Ucos ∪ Urep, then U does not satisfy the (QP ).

Next, we consider the case that there is no representable uninorm centered around
point (e, e). In this situation, according to the Theorem 3.9 in [19], it obtains that there
is a rectangular region D = (a, b)× (c, d) in A(e) with b < c such that for any (x, y) ∈ D
we obtain x < U(x, y) < y. Based on this viewpoint, to verify the validity of (QP ), we
need to introduce the concept of maximum non-locally internal rectangular region of U .

Definition 3.4. Let U ∈ Ucts, then we call a rectangular region D = (a, b) × (c, d) as
a maximum non-locally internal rectangular region of U if the following two conditions
are satisfied.
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(i) D ⊆ A(e) and min{x, y} < U(x, y) < max{x, y} for each point (x, y) ∈ D.

(ii) For any rectangular region D̂ satisfies D ⊂ D̂, there is at least one point (x0, y0) ∈
D̂\D such that U(x0, y0) ∈ {x0, y0}.

Note that if D̃ = (a, b)× (c, d) is a maximum non-locally internal rectangular region

of U , then the commutativity of U implies that ˜̃D = (c, d) × (a, b) is also a maximum
non-locally internal rectangular region. Therefore, in this sense, we refer to (a, b) ×
(c, d) ∪ (c, d) × (a, b) as the maximum non-locally internal rectangular region pair of
U . Obviously, the non-locally internal region of a uninorm U ∈ Ucts in A(e) is the
union of all maximum non-locally internal rectangular region pairs. Indeed, suppose
that (a, b) × (c, d) with b ≤ c is a maximum non-locally internal rectangular region of
U ∈ U

cts(e)
, then according to the results in [19] we know U restricted on [a, b]2 and

[c, d]2 is a strict triangular norm and a strict triangular conorm, respectively.

Proposition 3.5. (Drygaś [6], Li et al. [19], Su et al. [30]) Suppose that D = (a, b)×
(c, d) with b ≤ c is a maximum non-locally internal rectangular region of U ∈ U

cts(e)
,

then the following conditions are valid.

(i) The set ([a, b]∪ [c, d])2 is closed under U and U is strictly increasing on the region
of (a, b)× (c, d).

(ii) For each x ∈ (a, b) there exists a λx ∈ (c, d) such that U(x, y) > e for all y ∈ (λx, d)
and U(x, y) < e for all y ∈ (c, λx).

Lemma 3.6. Let U ∈ U
cts(e)

is not locally internal in A(e) and there is no representable
uninorm centered around point (e, e), then U does not satisfies (QP ).

P r o o f . According to the assumption that U belongs to U
cts(e)

and is non-locally
interval in A(e), we know that there is a point (x0, y0) in A(e) that satisfies x0 <
U(x0, y0) < y0. Therefore, there exists a maximum non-locally internal rectangular
region D0 = (a0, b0) × (c0, d0) in A(e) such that (x0, y0) ∈ D0. Further, by using The-
orem 3.9 in [19] and the fact that there is no representable uninorm centered around
point (e, e), it obtains that b0 < c0 and U restricted on [a0, b0]

2 and [c0, d0]
2 is a strict

triangular norm and a strict triangular conorm, respectively.
Notice that by Proposition 3.5 (i) we know the set ([a0, b0]∪[c0, d0])2 is closed under U

and the section U(x0, ·) restricted on (a0, b0)×(c0, d0) is strictly increasing for each fixed
x0 ∈ (a0, b0). Moreover, Proposition 3.5 (ii) further implies that there is some λx0

∈
(c0, d0) such that U(x0, y) > e for all y ∈ (λx0 , d0) and U(x0, y) < e for all y ∈ (c0, λx0).
Based on these materials, we can see that for any fixed y1 ∈ (a0, b0), there always exists
some z1 ∈ (λy1

, d0) such that c0 < U(y1, z1) < d0. According to U restricted on [c0, d0]
2

is a strict triangular conorm, one obtains that U(c0, U(y1, z1)) = U(y1, z1) < z1 and
U(d0, U(y1, z1)) = d0 > z1. Therefore, it holds that there exists some x1 ∈ (c0, d0) such
that U(x1, U(y1, z1)) = z1. However, from the fact that the point (y1, z1) comes from
the region D0, we also have that U(y1, z1) < z1.

To summarize the above discussions, we have found a triplet (x1, y1, z1) satisfies
U(x1, U(y1, z1)) = z1 and U(y1, z1) < z1. As a result, U does not satisfies (QP ). □
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Combining the analyses of two situations above, the following conclusion can be
reached.

Theorem 3.7. If U ∈ U
cts(e)

, then U satisfies the (QP ) if and only if U is locally
interval in A(e).

P r o o f . Suppose that U ∈ Uccts(e) , then by Lemma 3.2 and Lemma 3.6, we know
there exists no point (x0, y0) ∈ A(e) satisfies min{x0, y0} < U(x0, y0) < max{x0, y0}.
Therefore, U is locally interval in A(e). The validity of necessity is guaranteed by
Proposition 3.1. □

Theorem 3.8. If U ∈ U
cts(e)

, then ([0, 1],⪯U ) is a U -poset if and only if U is locally
interval in A(e). In this case, ([0, 1],⪯U , U(0, 1), e) is a bounded chain.

P r o o f . Since uninorm U has neutral element e, it is known that U naturally satisfies
(LLI) property. Therefore, to make ([0, 1],⪯U ) a partially ordered set, by Theorem 2.4
it is only necessary to check that U satisfies (QP ), which is equivalent to U being locally
internal in A(e) as shown in Theorem 3.7. Therefore, it obtains that ([0, 1],⪯U ) is a
U -poset if and only if U is locally internal in A(e).

Next, let us prove that ([0, 1],⪯U ) is actually a bounded chain takes U(0, 1) and e
as the bottom and top elements, respectively. For any x, y ∈ [0, e] satisfies x ≤ y, the
continuity of underlying triangular norm of U implies that there exists some ℓ ∈ [0, e]
such that U(ℓ, y) = x. Therefore, we get x ⪯U y, which means that any two elements
in [0, e] are comparable with respect to ⪯U , and the order is consistent with the natural
order. Similarly, by utilizing the continuity of the underlying triangular conorm of U ,
it can be inferred that any two elements in [e, 1] are also comparable, and the order
is the reverse of the natural order. As for the case (x, y) ∈ A(e), if U(x, y) = x, then
x ⪯U y. Similarly, if U(x, y) = y, then y ⪯U x. Therefore, it has been shown that any
two elements in [0, 1] are comparable with respect to ⪯U , that is, ([0, 1],⪯U ) is a chain.
Finally, by (x, e) = x for all x ∈ [0, 1], we have e is the top element. Using the same
approach, the fact that U(U(0, 1), x) = U(0, 1) for all x ∈ [0, 1] leads to U(0, 1) is the
bottom element. □

Note that the results of Theorem 3.8 answer the question raised in Ref. [9] concern the
relationship between the partially ordered set induced by U and the partially ordered sets
generated by the underlying operators TU and SU within the framework of U comes from
Ucts. The results indicate that the partially ordered set ([0, 1],⪯U ) inherits the orders
generated by the underlying operators and ultimately forms a chain. Meanwhile, it also
emphasises the value of order-theoretic exploration of algebraic structures. Whether a
given uninorm U ∈ U

cts(e)
is locally interval in A(e) or not is characterised by whether

it is equipped with the ability to yield a partial order under the relation ⪯U . It shows
that ([0, 1],⪯U ) is a U -poset if and only if U ∈ Ulin. To illustrate this viewpoint, the
following example is provided.
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Example 3.9. Let an = 3
8 − 3

7+n , bn = 3
8 − 3

8+n , cn = 5
8 + 3

8+n and dn = 5
8 + 3

7+n ,

where n ∈ N+ and N+ stands for the set of all positive integers. Define the following
mapping,

gn(x) =


an + (bn − an)

x
e , if x < 1

2 ,
cn, if x = 1

2 ,

dn − (1−x)(dn−cn)
1−e , if x > 1

2 ,

where e = 1
2 . Then gn is a linear isomorphism from [0, 1] to [an, bn) ∪ [cn, dn]. For each

n ∈ N+, consider U✠
n : ([an, bn) ∪ [cn, dn])

2 → ([an, bn) ∪ [cn, dn]) given by U✠
n (x, y) =

gn(Ũn(g
−1
n (x), g−1

n (y))), where Ũn is a conjunctive representable uninorm with neutral
element 1

2 . Then U✠
n is a commutative, associative, non-decreasing operator for each

n ∈ N+. Next, we define the following operator U(x, y) =

U✠
n (x, y), if (x, y) ∈ ∪

n∈N+
([an, bn) ∪ [cn, dn])

2,

3
8 + 2

8 Ũ(
x− 3

8
5
8−

3
8

,
y− 3

8
5
8−

3
8

), if (x, y) ∈ [ 38 ,
5
8 ]

2,

min{x, y}, if (x, y) ∈ [0, 1]2 \ { ∪
n∈N+

([an, bn) ∪ [cn, dn])
2 ∪ [ 38 ,

5
8 ]

2}
and x+ y < 1,

max{x, y}, otherwise,

where Ũ is an idempotent uninorm with neutral element 1
2 . Then U is a semigroup

Gn = (([an, bn)∪[cn, dn])2, U✠
n ) on ([an, bn)∪[cn, dn])2 and a semigroup Gβ = ([ 38 ,

5
8 ]

2, Ũ)
on [ 38 ,

5
8 ]

2. Let (N+ ∪ {β},⪯) be a linearly ordered set with n ⪯ n + 1 and n ⪯ β for
each n ∈ N+. Based on these materials, Theorem 3.42 in [13] indicates that U is a
semigroup. Therefore, it obtains that U is a uninorm from Ucts with neutral element 1

2
and is not locally internal in A( 12 ).

Obviously, g−1
n (yn) ∈ (0, 1

2 ) for each yn ∈ (an, bn). Therefore, by Ũn is a representable

uninorm, there is some zn ∈ (cn, dn) such that 1
2 < Ũn(g

−1
n (yn), g

−1
n (zn)) < 1, which

leads to cn < gn(Ũn(g
−1
n (yn), g

−1
n (zn))) < gn(g

−1
n (zn)) = zn. Notice that

U(cn, U(yn, zn)) = U(cn, gn(Ũn(g
−1
n (yn), g

−1
n (zn))))

= gn(Ũn(g
−1
n (cn), g

−1
n (gn(Ũn(g

−1
n (yn), g

−1
n (zn))))))

= gn(Ũn(
1

2
, Ũn(g

−1
n (yn), g

−1
n (zn))))

= gn(Ũn(g
−1
n (yn), g

−1
n (zn)))

and

U(dn, U(yn, zn)) = U(dn, gn(Ũn(g
−1
n (yn), g

−1
n (zn))))

= gn(Ũn(g
−1
n (dn), g

−1
n (gn(Ũn(g

−1
n (yn), g

−1
n (zn))))))

= gn(Ũn(1, Ũn(g
−1
n (yn), g

−1
n (zn))))

= gn(1)

= dn.

Therefore, the continuity of U in [cn, dn]
2 implies that there is some xn ∈ (cn, dn) such

that
U(xn, gn(Ũn(g

−1
n (yn), g

−1
n (zn)))) = U(xn, U(yn, zn)) = zn.
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However, U(yn, zn) = gn(Ũn(g
−1
n (yn), g

−1
n (zn))) < zn. Therefore, we obtain that U does

not satisfies (QP ), and ([0, 1],⪯U ) is naturally not a U -poset by Theorem 2.4. Structures
of U is visualized in Figure 1.

Ũ
1
2

1
2

0 1

1

min

max

min max

U✠
1

U✠
1

U✠
1

U✠
1

U✠
2

U✠
2

U✠
2

U✠
2

Fig. 1. Structure of U in Example 3.9.

Theorem 3.8 states that for a uninorm U ∈ U
cts(e)

, which is not locally internal in
A(e), the relation ⪯U can not induce a U -poset. Therefore, on the topic of whether
such a uninorm is capable of generating a partially ordered set, our first reaction is to
exclude it, which is naturally correct. However, the following results show that as long
as it is subjected to a simple modification, the resulting operator is not only a uninorm
but also equipped with the ability to satisfy (QP ).

Lemma 3.10. Suppose that U ∈ U
cts(e)

and D = (a, b) × (c, d) with b ≤ c is one of
its maximum non-locally internal rectangular regions, then the following conditions are
satisfied.

(i) U(x, y) = min{x, y} for all (x, y) ∈ (a, b)× [e, c] ∪ [0, a]× (c, d).

(ii) U(x, y) = max{x, y} for all (x, y) ∈ (a, b)× [d, 1] ∪ [b, e]× (c, d).

P r o o f . Notice that U is a strict triangular norm and a strict triangular conorm on
[a, b]2 and [c, d]2, respectively. Then, using Remark 3.7 in [19] and Lemma 10 in [22], it
can be concluded that the results are valid. □

Proposition 3.11. Suppose that U ∈ U
cts(e)

is not locally internal in A(e), then the
operator defined as

Ũ(x, y) =

{
min{x, y}, if (x, y) ∈ D̃,
U(x, y), otherwise,

is a uninorm and satisfies (QP), where D̃ is the non-locally internal region of U in A(e).
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P r o o f . To obtain the conclusion, it is sufficient to prove that the defined operator Ũ is
a uninorm. Obviously, Ũ satisfies commutativity and e is its neutral element. Notice that
D̃ = ∪

i∈I
Di, where Di = (ai, bi)× (ci, di)∪ (ci, di)× (ai, bi) with bi ≤ ci is the maximum

non-locally internal rectangular region pair of U , and I is an at most countable index
set. By using Lemma 3.10, one can easily obtain that Ũ is increasing. Therefore, to
ensure that Ũ is a uninorm, it is sufficient to verify the associativity. According to the
expression of Ũ , it is enough for us to make the following two verifications.

(i) Checking the equality Ũ(Ũ(x, y), z) = Ũ(x, Ũ(y, z)) on sets {x, y, z} such that none
of the pairs in the set {x, y, z} × {x, y, z} comes from D̃. We have the following
considerations.

(a) If (x, y, z) ∈ [0, e]3 or (x, y, z) ∈ [e, 1]3, then the associativity of Ũ is guaran-
teed by U .

(b) Suppose that there are two elements in the set {x, y, z} belong to [0, e], and
the remaining element comes from [e, 1]. We only verify the situation that
(x, y) ∈ [0, e]2 and z ∈ [e, 1] as other cases can be discussed similarly. In this
case, we have Ũ(y, z) = U(y, z) ∈ {y, z}. Thus, it holds that Ũ(x, Ũ(y, z)) =
U(x, U(y, z)). As for the value of Ũ(Ũ(x, y), z)), we get Ũ(Ũ(x, y), z)) =
Ũ(U(x, y), z)). If U(x, y) = min{x, y}, then by assumption, it is obtained
that Ũ(U(x, y), z)) = U(U(x, y), z)). If U(x, y) < min{x, y}, then we know
that there exist a, b ∈ [0, e] such that (x, y) ∈ (a, b)2 and U restricted on
[a, b]2 is a continuous Archimedean triangular norm. By the assumption that
none of the pairs in the set {x, y, z} × {x, y, z} belongs to D̃, one concludes
that (ω, z) /∈ D̃ for any ω ∈ [a, b]. Consequently, we have Ũ(U(x, y), z)) =
U(U(x, y), z)) by the fact that U(x, y) ∈ [a, b). Therefore, one concludes that
Ũ(Ũ(x, y), z) = Ũ(x, Ũ(y, z)).

(c) Suppose that there are two elements in the set {x, y, z} belong to [e, 1], and
the remaining element comes from [0, e]. Then similar to the verifications of
situation (i) (b), the associativity is established.

(ii) Verifying the equality Ũ(Ũ(x, y), z) = Ũ(x, Ũ(y, z)) on sets {x, y, z} such that at
least one of the pairs in the set {x, y, z}×{x, y, z} belongs to D̃. We will only verify
the case of (x, y) ∈ D̃ here, as the certifications for other cases can be provided in
the same way. In this situation, there exists some i ∈ I such that (x, y) ∈ Di.

(a) Assume that (x, y) ∈ (ai, bi)× (ci, di). Then, Ũ(Ũ(x, y), z) = Ũ(x, z). As for
the value of Ũ(x, Ũ(y, z)), we have the following considerations.

i. If z ∈ [0, bi) ∪ [di, 1], then Ũ(x, Ũ(y, z)) = Ũ(x, Ũ(z, y)). Further, by
Lemma 3.10 we have Ũ(x, Ũ(z, y)) = Ũ(x, z).

ii. If z ∈ [bi, ci], then we get Ũ(x, Ũ(y, z)) = Ũ(x, Ũ(z, y)) = Ũ(x, U(z, y)).
By Lemma 3.10 it holds that Ũ(x, U(z, y)) = Ũ(x, y) = x and Ũ(x, z) =
x.

iii. If z ∈ (ci, di), then Ũ(x, Ũ(y, z)) = Ũ(x, U(y, z)) = U(y, z) ∧ x = x by
using ci < U(y, z) < di. Meanwhile, it also holds that Ũ(x, z) = x.
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(b) Assume that (x, y) ∈ (ci, di)× (ai, bi). Then, Ũ(Ũ(x, y), z) = Ũ(y, z). As for
the value of Ũ(x, Ũ(y, z)), the following verifications appear.

i. If z ∈ [0, ai] ∪ [di, 1], then by Lemma 3.10 it holds that Ũ(x, Ũ(y, z)) =
Ũ(x, U(y, z)) = Ũ(x, z) = z = Ũ(y, z).

ii. If z ∈ [bi, di), then Ũ(x, Ũ(y, z)) = Ũ(x, y) = y and Ũ(y, z) = y.

iii. If z ∈ (ai, bi), then Ũ(x, Ũ(y, z)) = Ũ(x, U(y, z)) = U(y, z) ∧ x = U(y, z)
by using ai < U(y, z) < bi. Meanwhile, we also have that Ũ(y, z) =
U(y, z).

Taking all the above discussions together, one concludes that Ũ is a uninorm. □

Proposition 3.11 shows that if the operation corresponding to the non-locally inter-
nal region in A(e) is replaced with the smaller of two variables, the resulting operator
remains a uninorm and satisfies (QP ). The following result indicates that on the basis
of Proposition 3.11, changing the operation corresponding to the maximum non-locally
internal rectangular region pairs to the larger of two variables is also a viable approach.

Proposition 3.12. Suppose that U ∈ U
cts(e)

is not locally internal in A(e), D̃ = ∪
i∈I

Di,

where Di = (ai, bi) × (ci, di) ∪ (ci, di) × (ai, bi) is the maximum non-locally internal
rectangular region pair of U . Let Ĩ be a subset if I, then the operator defined as

˜̃U(x, y) =

{
max{x, y}, if (x, y) ∈ Di and i ∈ Ĩ ,

Ũ(x, y), otherwise,
(3)

is a uninorm and satisfies (QP ), where Ũ is defined in Proposition 3.11.

P r o o f . From Proposition 3.11 one obtains that Ũ is a uninorm. Due to the fact that

operator ˜̃U is obtained by replacing the value of Ũ in region Di (i ∈ Ĩ) with the larger of

two variables, it can be concluded that ˜̃U is a uninorm by using the same proof method
as Proposition 3.11. □

The results of Proposition 3.11 and Proposition 3.12 demonstrate that for a uninorm
U ∈ U

cts(e)
that is not locally internal in A(e), as long as the operation corresponding

to the maximum non-locally internal region pair is replaced with the smaller (larger) of
two variables, then the resulting operator is not only a uninorm but also satisfies (QP ).

Example 3.13. For the uninorm U presented in Example 3.9, it has been verified that
it cannot generate a U -poset. However, according to the results of Proposition 3.12,
for each region Dn = (an, bn) × (cn, dn) ∪ (cn, dn) × (an, bn) with n ∈ N+, as long
as the values of U in this region are all replaced with the smaller of two variables, or
all are changed to the larger of two variables, then the resulting uninorm is able to
yield a U -poset. Further, assuming that the function value of U on each (an, bn) ×
(cn, dn)∪ (cn, dn)× (an, bn) with n ∈ N+ is replaced by the smaller of the two variables,
and that Ũ is a member of Umin, then we can obtain the following order relationship
between elements. For the convenience of expression, we denote the set C is equal to
A( 12 )\{ ∪

n∈N+
{(an, bn)× (cn, dn) ∪ (cn, dn)× (an, bn)} ∪ [ 38 ,

5
8 ]

2}.
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• Since U in region [0, 1
2 ]

2 is a continuous triangular norm, we know that in this
area, ⪯U is consistent with the natural order.

• By U in region [ 12 , 1]
2 is a continuous triangular conorm, one obtains that in this

area, ⪯U is consistent with the reverse natural order.

• According to U(x, y) = y for each (x, y) ∈ C satisfies x + y > 1 and y > x , we
have y ⪯U x in this case.

• From U(x, y) = y for each (x, y) ∈ C such that x + y < 1 and x > y, we obtain
y ⪯U x in this situation.

• In the remaining area of the unit region, we have x ⪯U y by U(x, y) = x.

After the order equivalence relation for triangular norms was investigated in the
framework of Clifford’s relation [14], it is natural to consider the order equivalence
relation of uninorms, which serve as their generalized operators. In the following context,
an equivalence relation for the class of uninorms will be defined and explored.

Definition 3.14. Uninorms U1 and U2 are said to be order equivalent, denoted as U1 ∼
U2, if and only if U1-poset coincides with U2-poset.

Obviously, the relation ∼ presented in Definition 3.14 is an equivalence relation.

Lemma 3.15. Suppose that U1 ∈ Ucts(e1) and U2 ∈ Ucts(e2). If U1 ∼ U2, then e1 = e2.

P r o o f . Suppose that e1 < e2, then let us take x, y ∈ (e1, e2) such that x < y. In
this case, there is some ζ ∈ (e1, 1] satisfies U1(ζ, x) = y. So we obtain y ⪯U1 x. On
the other hand, there also exists some γ ∈ [0, e2) satisfies U2(γ, y) = x, which implies
that x ⪯U2

y. According to U1 ∼ U2 and the antisymmetry of partial order, we have
x = y. A contradiction is reached. Through a similar argument, the case of e1 > e2 is
also impossible. Aa a result, e1 = e2. □

Lemma 3.16. Suppose that U1 and U2 are two uninorms, then U1 ∼ U2 if and only if
Ran(U1(·, x)) = Ran(U2(·, x)) for all x ∈ [0, 1].

P r o o f . Taking y ∈ Ran(U1(·, x)), then there exists some ℓ1 ∈ [0, 1] such that y =
U1(ℓ1, x). By using the definition of ⪯U1

we have y ⪯U1
x. Therefore, by U1 ∼ U2 we

have y ⪯U2
x, which indicates that there is some ℓ2 ∈ [0, 1] such that U2(ℓ2, x) = y.

That is, y ∈ Ran(U2(·, x)). Thus, we have proven that Ran(U1(·, x)) ⊆ Ran(U2(·, x)).
Through a similar verification, the reverse inclusion Ran(U2(·, x)) ⊆ Ran(U1(·, x)) is
also established. Therefore, one concludes that Ran(U1(·, x)) = Ran(U2(·, x)).

On the contrary, suppose that x ⪯U1
y, then there exists some ℓ3 ∈ [0, 1] such that

U1(ℓ3, y) = x. Therefore, the fact that Ran(U1(·, x)) = Ran(U2(·, x)) implies there is
some ℓ4 ∈ [0, 1] such that U2(ℓ4, y) = x. As a result, x ⪯U2 y. By the same method, it
is also valid that x ⪯U1 y can be derived by x ⪯U2 y. Therefore, it is true that U1 ∼ U2.

□

Lemma 3.16 shows that U1 ∼ U2 if and only if the range of values of their horizontal-
sections remain consistent. The following result further shows that their values in A(e)
are exactly the same.
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Theorem 3.17. If U1 ∈ Uccts(e) and U2 ∈ U
cts(e)

. Then U1 ∼ U2 if and only if the
following statements hold simultaneously.

(i) U1 and U2 are locally interval in A(e).

(ii) U1(x, y) = U2(x, y) for all (x, y) ∈ A(e).

P r o o f . To ensure that both U1 and U2 are capable of generating partially ordered sets,
Theorem 3.7 illustrates that U1 and U2 must be locally interval in A(e). That is, item
(ii) is established. Based on this fact, by Lemma 3.16 and the fact that U1 and U2 have
the same neutral element, it can be seen that U1(x, y) = U2(x, y) for all (x, y) ∈ A(e).

The reverse implication is guaranteed by Lemma 3.16. □

Corollary 3.18. Suppose that U1 and U2 belong to U
cts(e)

such that U1 ∼ U2. The
following two statements are valid.

(i) U1 ∈ Umin if and only if U2 ∈ Umin.

(ii) U1 ∈ Umax if and only if U2 ∈ Umax.

P r o o f . It can be directly obtained by Proposition 3.17. □

4. QUASI-PROJECTION FOR 2-UNINORMS WITH CONTINUOUS
UNDERLYING OPERATORS

In this section, we explore the performance of generating partial orders in the framework
of 2-uninorms, which are generalizations of uninorms. Due to the fact that 2-uninorms
are equipped with two local neutral elements, the property of (LLI) is naturally satis-
fied. Therefore, whether a 2-uninorm G can induce a G-poset depends entirely on the
satisfaction of (QP ).

Lemma 4.1. Suppose that G = ⟨U1, U2⟩ is a 2-uninorm. If G satisfies (QP ) then U1

and U2 satisfy (QP ).

P r o o f . Suppose that U1(
x0

k , U1(
y0

k , z0
k )) = z0

k for some x0, y0, z0 ∈ [0, k], then we have
kU1(

x0

k , U1(
y0

k , z0
k )) = z0. Therefore, it holds that G(x0, G(y0, z0)) = z0. According to

G satisfies (QP ) one has that G(y0, z0) = z0. Therefore, we have that kU1(
y0

k , z0
k ) = z0.

That is, U1(
y0

k , z0
k ) = z0

k . Consequently, it is obtained that U1 satisfies (QP ). Through
a similar argument, it is also true that U2 satisfies (QP ). □

Lemma 4.2. Suppose that G = ⟨U1, U2⟩ ∈ Gk, then G satisfies (QP ) if and only if U1

and U2 satisfy (QP ).

P r o o f . The sufficiency has been guaranteed by Lemma 4.1. Suppose thatG(x,G(y, z))
= z. To verify that G(y, z) = z, we need to consider the following situations.

(i) If y, z ∈ [0, k], then according to the structure of the 2-uninorm we have G(y, z) ≤
k.
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(a) If x ∈ [0, k], then by G(x,G(y, z)) = z we have U1(
x
k , U1(

y
k ,

z
k )) = z

k . Ac-
cording to the fact that U1 satisfies (QP ), one has U1(

y
k ,

z
k ) = z

k , that is,
G(y, z) = z.

(b) If x ∈ (k, 1], then by G(x,G(y, z)) = z we get z = k. Therefore, G(y, z) = k
is established.

(ii) If y, z ∈ [k, 1], in this case, it holds that G(y, z) ≥ k.

(a) If x ∈ [0, k), then from G(x,G(y, z)) = z, we know that z = k. Thus, we have
G(y, z) = k.

(b) If x ∈ [k, 1], then z = G(x,G(y, z)) = k + (1 − k)U2(
x−k
1−k , U2(

y−k
1−k ,

z−k
1−k )),

which means U2(
x−k
1−k , U2(

y−k
1−k ,

z−k
1−k )) =

z−k
1−k . By using U2 satisfies (QP ), we

have U2(
y−k
1−k ,

z−k
1−k ) =

z−k
1−k , which implies that G(y, z) = z.

(iii) If (y, z) ∈ [0, k)× (k, 1]∪ (k, 1]× [0, k), then we have G(y, z) = k. For any x ∈ [0, 1]
it holds that G(x,G(y, z)) = G(x, k) = k, which means the antecedent of (QP ) is
not satisfied.

Above discussions show that G satisfies (QP ) if and only if U1 and U2 satisfy (QP ). □

Lemma 4.3. Suppose that G = ⟨U1, U2⟩ ∈ Gc,k, then G satisfies (QP ) if and only if
U1 and U2 satisfy (QP ).

P r o o f . From Lemma 4.1, it can be inferred that sufficiency holds. Now, let us verify
G(y, z) = z is valid under the condition that G(x,G(y, z)) = z.

(i) Assume that y, z ∈ [0, k], then according to the structure of the G, we have
G(y, z) ≤ k.

(a) If x ∈ [0, k], then through a verification similar to Lemma 4.2, one has that
G(y, z) = z.

(b) If x ∈ (k, 1], then we get z = G(x,G(y, z)) = G(k,G(y, z)) = kU1(
k
k , U1(

y
k ,

z
k )).

According to the fact that U1 satisfies (QP ), we have U1(
y
k ,

z
k ) = z

k , which
means that G(y, z) = z.

(ii) Suppose that y, z ∈ [k, 1], then we have G(y, z) ≥ k.

(a) If x ∈ [0, k], in this case, we have G(x,G(y, z)) = G(x, k) ≤ G(k, k) = k. To
ensure the antecedent of (QP ) is valid, it must be that z = k. Therefore,
G(y, z) = G(y, k) = k.

(b) If x ∈ [k, 1], then by using the same verification as Lemma 4.2, one has that
G(y, z) = z.

(iii) If (y, z) ∈ [0, k) × (k, 1], then according to the structure of the G, we have
G(x,G(y, z)) = G(x,G(y, k)) = G(G(x, y), k) ≤ G(G(1, y), k) = G(G(k, y), k) =
G(G(k, k), y) = G(k, y) ≤ G(k, k) = k. Therefore, in this case, the antecedent of
(QP ) is not valid.
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(iv) If (y, z) ∈ (k, 1]× [0, k), then we have the following considerations.

(a) If x ∈ [0, k], then it obtains that z = G(x,G(y, z)) = G(x,G(k, z)). By using
U1 satisfies (QP ), one concludes that G(k, z) = z. As a result, G(y, z) =
G(k, z) = z.

(b) If x ∈ [k, 1], then we have z = G(x,G(y, z)) = G(x,G(k, z)) = G(G(x, z), k) =
G(G(k, z), k) = G(z,G(k, k)) = G(z, k). Therefore, we obtain that G(y, z) =
G(k, z) = z.

The above analyses indicate that G satisfies (QP ) if and only if U1 and U2 satisfy (QP ).
□

Next, we consider the case where G(0, 1) = 1 and G(0, k) = k.

Lemma 4.4. Let G = ⟨U1, U2⟩ ∈ Gd,k, then G satisfies the (QP ) if and only if U1 and
U2 satisfy (QP ).

P r o o f . The sufficiency has been guaranteed by Lemma 4.1. Suppose thatG(x,G(y, z)) =
z. To verify that G(y, z) = z, we need to consider the following situations.

(i) If y, z ∈ [0, k], then it holds that G(y, z) ≤ k.

(a) If x ∈ [0, k], then by using U1 satisfies (QP ), one has that G(y, z) = z.

(b) If x ∈ (k, 1], then according to the structure of the G, we have G(x,G(y, z)) =
G(x, k) ≥ k. To ensure the antecedent of (QP ) is valid, it must be that z = k.
Therefore, it holds that G(y, z) = G(y, k) = k.

(ii) If y, z ∈ [k, 1], then we have G(y, z) ≥ k.

(a) Let x ∈ [0, k], then according to the structure of the G, we have z =
G(x,G(y, z)) = G(k,G(y, z)) = k + (1 − k)U2(

k−k
1−k , U2(

y−k
1−k ,

z−k
1−k )), which

means that U2(
k−k
1−k , U2(

y−k
1−k ,

z−k
1−k )) = z−k

1−k . According to the fact that U2

satisfies (QP ), we have U2(
y−k
1−k ,

z−k
1−k ) =

z−k
1−k , which implies that G(y, z) = z.

(b) If x ∈ [k, 1], then by using U2 satisfies (QP ), one has that G(y, z) = z.

(iii) If (y, z) ∈ [0, k) × (k, 1], then according to the structure of the G, we have z =
G(x,G(y, z)) = G(x,G(k, z)) = G(k,G(x, z)).

(a) If x ∈ [0, k], then G(k,G(x, z)) = G(k,G(k, z)) = G(G(k, k), z) = G(k, z),
i. e., z = G(k, z). Therefore, G(y, z) = G(y,G(k, z)) = G(k,G(y, z)) =
G(k,G(k, z)) = G(k, z) = z.

(b) If x ∈ [k, 1], then G(k,G(x, z)) = k+ (1− k)U2(
k−k
1−k , U2(

x−k
1−k ,

z−k
1−k )). Thus, if

the antecedent of (QP ) is valid, then one gets that U2(
k−k
1−k , U2(

x−k
1−k ,

z−k
1−k )) =

z−k
1−k . Further, by U2 satisfies (QP ) we have U2(

x−k
1−k ,

z−k
1−k ) = z−k

1−k . That is,
G(x, z) = z, which means that G(y, z) = G(y,G(x, z)) = G(x,G(y, z)).
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(iv) If (y, z) ∈ (k, 1] × [0, k). Then according to the structure of the G, we have
G(x,G(y, z)) = G(x,G(y, k)) = G(G(k, x), y) ≥ G(G(k, 0), y) = G(k, y) ≥ k,
which means that the antecedent of (QP ) is not valid.

Therefore, we conclude that G satisfies the (QP ) if and only if U1 and U2 satisfy (QP ).
□

Theorem 4.5. If G = ⟨U1, U2⟩ ∈ Gk ∪Gc,k ∪Gd,k, then ([0, 1],⪯G) is a G-poset if and
only if ([0, 1],⪯U1

) and ([0, 1],⪯U2
) are respectively U1-poset and U2-poset.

P r o o f . Note that if ([0, 1],⪯U1) and ([0, 1],⪯U2) are respectively U1-poset and U2-
poset, then by Theorem 2.4 we know that U1 and U2 satisfy (QP ). Therefore, by using
Lemma 4.2, Lemma 4.3 and Lemma 4.4, we know the result is valid. □

Corollary 4.6. Let G = ⟨U1, U2⟩ ∈ Gcts(e1,k,e2) belongs to Gk ∪ Gc,k ∪ Gd,k, then
([0, 1],⪯G) is a G-poset if and only if U1 and U2 are locally internal in A( e1k ) and

A( e2−k
1−k ) respectively.

P r o o f . By combining Theorem 4.5 and Theorem 3.8, the result is straightforward. □
Next, we consider the situation that G ∈ Gc,1 ∪ Gd,0. In this situation, as stated in

Proposition 2.12, the value of G restricts to [0, e1) × (e2, 1] ∪ (e2, 1] × [0, e1) falls into
[0, e1]∪ k ∪ [e2, 1]. To discuss of the satisfaction of (QP ), the following observations are
obtained when (x, y, z) ∈ [0, e1)× [0, e1)× (e2, 1].

(i) If G(y, z) ∈ [0, e1]∪{k}, then we get G(x,G(y, z)) ≤ G(x, k) ≤ k. In this case, the
antecedent of (QP ) is not established.

(ii) Suppose that G(y, z) ∈ [e2, 1]. In this case, since there is no additional information
available regarding the value of G(y, z), we cannot confirm that the antecedent of
(QP ) is invalid. Furthermore, even if the antecedent G(x,G(y, z)) = z is estab-
lished, we still cannot determine the validity of the consequent G(y, z) = z.

Therefore, when G comes from Gc,1 or Gd,0, we will impose a reasonable condition that
G is locally internal on [0, e1)× (e2, 1]∪ (e2, 1]× [0, e1) to facilitate the discussion of the
satisfaction of (QP ).

Lemma 4.7. Suppose that G = ⟨U1, U2⟩ comes from Gc,1 ∪Gd,0 and is locally internal
on [0, e1)× (e2, 1] ∪ (e2, 1]× [0, e1). Then G satisfies the (QP ) if and only if U1 and U2

satisfy the (QP ).

P r o o f . According to Lemma 4.1, sufficiency is established. To verify that G(y, z) = z
is true on the condition that G(x,G(y, z)) = z, the following considerations arise.

(i) If x, y, z ∈ [0, e2], then G restricted on [0, e2]
2 can be expressed as G(x, y) =

e2G̃( x
e2
, y
e2
) with G̃ ∈ Gc,k and the underlying uninorms of G̃ satisfy (QP ). There-

fore, the condition G(x,G(y, z)) = z is equivalent to that G̃( x
e2
, G̃( y

e2
, z
e2
)) = z

e2
.

By Lemma 4.3 it holds that G̃( y
e2
, z
e2
) = z

e2
, which means that G(y, z) = z.
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(ii) If x, y, z ∈ [e1, 1], then G restricted on [e1, 1]
2 can be expressed as G(x, y) =

e1 + (1 − e1)
˜̃G(x−e1

1−e1
, y−e1
1−e1

) with ˜̃G ∈ Gd,k and the underlying uninorms of ˜̃G
satisfy (QP ). Similar to the arguments of (i), we obtain that G(y, z) = z by
Lemma 4.4.

Therefore, for the verifications of (QP ), we only need to consider the case where at least
one of the pairs in the set {x, y, z} × {x, y, z} falls into [0, e1)× (e2, 1] ∪ (e2, 1]× [0, e1).
Here we only check the situation that at least one pair comes from [0, e1) × (e2, 1], as
the other case can be addressed in a similar manner.

(i) Suppose that (y, z) ∈ [0, e1)× (e2, 1]. If G(y, z) = z, then the consequent of (QP )
is naturally valid. As for the case G(y, z) = y, we have G(x,G(y, z)) = G(x, y)
and the following considerations emerge.

(a) If x ∈ [0, e2], then G(x, y) ≤ e2 < z, which means that the antecedent of
(QP ) is not valid.

(b) If x ∈ (e2, 1], then G(x, y) ∈ {x, y}. If the antecedent of (QP ) is valid, then it
must be that G(x, y) = x = z. As a result, G(y, z) = G(y, x) = G(x,G(y, z)).

(ii) Suppose that (z, y) ∈ [0, e1)× (e2, 1]. If G(z, y) = z, then the consequent of (QP )
is automatically true. If G(z, y) = y, then we get G(x,G(y, z)) = G(x, y) and the
following discussions are needed.

(a) If x ∈ [0, e1), then G(x, y) ∈ {x, y}. If the antecedent of (QP ) is valid, it
must be that G(x, y) = x = z. Therefore, G(y, z) = (y, x) = G(x,G(y, z)).

(b) If x ∈ [e1, 1], then G(x, y) ≥ G(e1, e1) = e1 > z. That is, the antecedent of
(QP ) is not valid.

(iii) Suppose that (x, z) ∈ [0, e1) × (e2, 1]. If G(x, z) = z, then G(x,G(y, z)) =
G(y,G(x, z)) = G(y, z). Therefore, we only need to consider the situation that
G(x, z) = x. In this case, we have that G(x,G(y, z)) = G(x, y).

(a) Suppose that y ∈ [0, e2], then G(x, y) ≤ G(e2, e2) = e2 < z, which means
that the antecedent of the (QP ) is not valid.

(b) If y ∈ (e2, 1], then G(x, y) ∈ {x, y}. If the antecedent of (QP ) is valid,
then it must be that G(x, y) = y. In this case, G(y, z) = G(G(x, y), z) =
G(x,G(y, z)).

(iv) Assume that (z, x) ∈ [0, e1) × (e2, 1]. If G(z, x) = z, then G(x,G(y, z)) =
G(y,G(z, x)) = G(y, z). As for the case of G(z, x) = x, it gets that G(x,G(y, z)) =
G(x, y).

(a) If y ∈ [0, e1), then we have G(x, y) ∈ {x, y}. If the antecedent of (QP ) is
valid, then it must be that G(x, y) = y. Therefore, G(y, z) = G(G(x, y), z) =
G(x,G(y, z)).

(b) If y ∈ [e1, 1], then G(x, y) ≥ G(e1, e1) = e1 > z, which means that the
antecedent of the (QP ) is invalid.
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(v) Assume that (x, y) ∈ [0, e1) × (e2, 1] or (y, x) ∈ [0, e1) × (e2, 1]. In this case, if
G(x, y) = y, then G(x,G(y, z)) = G(G(x, y), z) = G(y, z). If G(x, y) = x, then
G(x,G(y, z)) = G(G(x, y), z) = G(x, z). If the antecedent of (QP ) is valid, then
it must be that G(x, z) = z. Therefore, G(y, z) = G(y,G(x, z)) = G(x,G(y, z)).

Based on the above discussions, it can be concluded that G satisfies the (QP ) if and
only if U1 and U2 satisfy (QP ). □

Remark 4.8. Lemma 4.7 adds the condition that G is locally internal on [0, e1) ×
(e2, 1]∪ (e2, 1]× [0, e1). In fact, as long as some conditions are attached to the boundary
of G, then G possesses this property as described below.

(i) For each G comes from Gc,1, Theorem 7 in [32] shows that if G(1, ·) is continuous
on [0, e1), then G is given by the minimum of two variables on [0, e1) × (e1, 1] ∪
(e1, 1]× [0, e1).

(ii) For any G belongs to Gd,0, Theorem 8 in [32] indicates that as long as G(0, ·) is
continuous on (e2, 1], then G is represented as the maximum of two variables on
[0, e2)× (e2, 1] ∪ (e2, 1]× [0, e2).

Theorem 4.9. If G = ⟨U1, U2⟩ comes from Gc,1∪Gd,0 and is locally internal on [0, e1)×
(e2, 1] ∪ (e2, 1] × [0, e1), then ([0, 1],⪯G) is a G-poset if and only if ([0, 1],⪯U1

) and
([0, 1],⪯U2

) are respectively U1-poset and U2-poset.

P r o o f . Note that if ([0, 1],⪯U1) and ([0, 1],⪯U2) are respectively U1-poset and U2-
poset, then we know that U1 and U2 satisfy (QP ) by Theorem 2.4. Therefore, in view
of the result obtained from Lemma 4.7, it can be concluded that the result is true. □

Corollary 4.10. Let G = ⟨U1, U2⟩ ∈ Gc,1 ∪ Gd,0 has continuous underlying operators
and is locally internal on [0, e1)× (e2, 1] ∪ (e2, 1]× [0, e1), then ([0, 1],⪯G) is a G-poset
if and only if U1 and U2 are locally internal in A( e1k ) and A( e2−k

1−k ) respectively.

P r o o f . By combining Theorem 4.9 and Theorem 3.8, the result is immediate. □

Remark 4.11. Similar to the discussions on the order equivalence of uninorms in the
third section, exploring the order equivalence classes of 2-uninorms under the framework
of Clifford’s order is also an interesting topic in order theory research. Clearly, analogous
to Lemma 3.16, it can be equivalently transformed into verifying whether the range of
values of the functions corresponding to the horizontal-sections are equal. For this reason
it will not be discussed in detail here.

Remark 4.12. Although the focus of this article and Refs. [22, 23] is on uninorms
(2-uninorms) with continuous underlying operators, their research themes are funda-
mentally different, which can be reflected in the following three aspects.

(i) This article primarily investigates whether the operators can generate partial or-
der, while Refs. [22, 23] focus on the structural representation of operators. For
example, Ref. [22] deals with the ordinal sum representation of such uninorms by
decomposing the characterizing set-valued function into segments.
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(ii) Our findings indicate that a fixed U belongs to U
cts(e)

can generate partial order
if and only if it is locally internal in A(e), which means that not every member of
such operators possesses the ability to generate a partially ordered set. However,
the results in Ref. [22] show that any member of such operators can be decomposed
into an ordinal sum.

(iii) Although Refs. [22] and [23] also addressed expressions of order in their research
processes, this order pertains to the index set of the decomposed semigroups. The
primary focus of these two articles regarding the order aspect is how to assign order
relations between the elements in the index set corresponding to the semigroups.
In contrast, the order discussed in this article is the order between elements in the
interval [0, 1], derived within the framework of Eg. (2) and in order to prove the
relation ⪯F can become a partial order, the core task of the article is to verify the
validity of the (QP ) property.

5. CONCLUSIONS

In this work, we first investigated the satisfaction of (QP ) for uninorms with continuous
underlying operators. It was found that such uninorms are capable of producing partial
orders if and only if they are locally internal in A(e), and the resulting partially ordered
set is a chain. For non-locally internal uninorms, we provided a simple and intuitive
reconstruction method, ensuring that the modified operators not only remain uninorms
but also gain the ability to generate partial orders. Building on this, we further explored
the performance of generating partial orders within the framework of 2-uninorms. The
results revealed that this capability is entirely determined by the underlying uninorms.
In the future, investigating the order theory behavior of n-uninorms will also be an
intriguing task, and the following observation can be made.

Observation 5.1. Let G is a n-uninorm with continuous underlying operators. Then
according to the results of Theorem 3.8 one obtains that if ([0, 1],⪯G) is a poset then
each underlying uninorm of G is locally internal in A(e).
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