Kybernetika 61 no. 3, 348-376, 2025

A novel study of properties, functional equations and families of fuzzy implications through strict monotonicity

Priyapada Hembram and Nageswara Rao VemuriDOI: 10.14736/kyb-2025-3-0348

Abstract:

It is well known that monotonicity has been an important defining criterion for fuzzy logic connectives, such as fuzzy negations, t-norms, t-conorms and fuzzy implications. Also, a stronger version of monotonicity, namely strict monotonicity, establishes some significant representation theorems of continuous fuzzy negations, continuous t-norms and continuous t-conorms. In this work, we propose the strict monotonicity for fuzzy implications and investigate some necessary conditions on fuzzy implications to fulfill the same. Also, the relationship between the basic properties, functional equations of fuzzy implications and the strict monotonicity will be investigated. Further, we examine the strict monotonicity for fuzzy implications that do come from different families of fuzzy implications and show that the strict monotonicity is a necessary condition for fuzzy polynomial implications, fuzzy rational implications and some subclasses of $(S,N)$ and $f$-generated fuzzy implications.

Keywords:

fuzzy implications, the law of importation, the law of contra-positive symmetry, $R$-implications, $(S;N)$-implications

Classification:

20M32, 03B52

References:

  1. M. Baczyński, G. Beliakov, H. Bustince and A. Pradera: Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing 300, Springer London, Limited, 2013.   DOI:10.1007/978-3-642-35677-3
  2. M. Baczyński and B. Jayaram: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer-Verlag, Berlin Heidelberg, 2008.   CrossRef
  3. M. Baczyński, B. Jayaram and R. Mesiar: Fuzzy implications: alpha migrativity and generalised laws of importation. Inform. Sci. 531 (2020), 87-96.   DOI:10.1016/j.ins.2020.04.033
  4. J. Balasubramaniam: Contrapositive symmetrisation of fuzzy implications - Revisited. Fuzzy Sets Systems 157 (2006), 17, 2291-2310.   DOI:10.1016/j.fss.2006.03.015
  5. J. Balasubramaniam: Yager's new class of implications $J_{f}$ and some classical tautologies. Inform. Sci. 177 (2007), 3, 930-946.   DOI:10.1016/j.ins.2006.08.006
  6. J. P. Bézivin and M. S. Tomás: On the determination of strict t-norms on some diagonal segments. Aequation. Math. 25 (1993), 1, 100-113.   DOI:10.1007/bf01855882
  7. M. Budinčević and M. Kurilić: A family of strict and discontinuous triangular norms. Fuzzy Sets Systems 95 (1998), 3, 381-384.   DOI:10.1016/S0165-0114(96)00284-9
  8. G. P. Dimuro and B. Bedregal: Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties. Fuzzy Sets Systems 252 (2014), 39-54, theme: Aggregation Functions.   DOI:10.1016/j.fss.2014.04.008
  9. J. Drewniak and Z. Matusiewicz: Fuzzy equations max with conditionally cancellative operations. Inform. Sci. 206 (2012), 18-29.   DOI:10.1016/j.ins.2012.04.021
  10. R. Fernandez-Peralta, S. Massanet, A. Mesiarová-Zemánková and A. Mir: Determination of the continuous completions of conditionally cancellative pre-t-norms associated with the characterization of (S,N)-implications: Part I. Fuzzy Sets Systems 468 (2023), 108614.   DOI:10.1016/j.fss.2023.108614
  11. R. Fernandez-Peralta, S. Massanet, A. Mesiarová-Zemánková and A. Mir: Determination of the continuous completions of conditionally cancellative pre-t-norms associated with the characterization of (S,N)-implications: Part II. Fuzzy Sets Systems 471 (2023), 108675.   DOI:10.1016/j.fss.2023.108675
  12. J. C. Fodor: Contrapositive symmetry of fuzzy implications. Fuzzy Sets Systems 69 (1995), 2, 141-156.   DOI:10.1016/0165-0114(94)00210-x
  13. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. First Edition. Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York 2009.   CrossRef
  14. D. Hliněná, M. Kalina and P. Král': Generated implications revisited. In: Advances Computational Intelligence (S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), Communications in Computer and Information Science 298, Springer, Berlin - Heidelberg 2012, pp. 345-354.   CrossRef
  15. B. Jayaram: On the law of importation $a \rightarrow (b \rightarrow c)) \equiv (a \wedge b) \rightarrow c$ in fuzzy logic. IEEE Trans. Fuzzy Systems 16 (2008), 1, 130-144.   DOI:10.1109/TFUZZ.2007.895969
  16. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. In: Trends in Logic 8, Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  17. E. Klement and R. Mesiar: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier Science, 2005.   CrossRef
  18. K. C. Maes and A. Mesiarová-Zemánková: Cancellativity properties for t-norms and t-subnorms. Inform. Sci. 179 (2009), 9, 1221-1233.   DOI:10.1016/j.ins.2008.11.035
  19. S. Mandal and B. Jayaram: SISO fuzzy relational inference systems based on fuzzy implications are universal approximators. Fuzzy Sets Systems 277 (2015), 1-21, theme: Fuzzy Systems.   DOI:10.1016/j.fss.2014.10.003
  20. S. Mandal and B. Jayaram: Monotonicity of SISO fuzzy relational inference with an implicative rule base. IEEE Trans. Fuzzy Systems 24 (2016), 6, 1475-1487.   DOI:10.1109/TFUZZ.2016.2540061
  21. M. Mas, M. Monserrat and J. Torrens: The law of importation for discrete implications. Inform. Sci. 179 (2009), 24, 4208-4218.   DOI:10.1016/j.ins.2009.08.028
  22. S. Massanet, A. Mir, J. V. Riera and D. Ruiz-Aguilera: Fuzzy implication functions with a specific expression: The polynomial case. Fuzzy Sets Systems 451 (2022), 176-195.   DOI:10.1016/j.fss.2022.06.016
  23. S. Massanet, J. V. Riera and D. Ruiz-Aguilera: On fuzzy polynomial implications. In: Processing and Management of Uncertainty in Knowledge-Based Systems - 15th International Conference (A. Laurent, O. Strauss, B. Bouchon-Meunier, and R. R. Yager, eds.), Information IPMU 2014, Montpellier 2014, Proceedings, Part I, Vol. 442 of Communications in Computer and Information Science, Springer, 2014, pp. 138-147.   DOI:10.1007/978-3-319-08795-5\_15
  24. S. Massanet, J. V. Riera and D. Ruiz-Aguilera: On (OP)-polynomial implications. In: 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (J.\.M. Alonso, H. Bustince, and M. Z. Reformat, eds.), (IFSAEUSFLAT-15), Gijón 2015, Atlantis Press, 2015.   DOI:10.2991/ifsa-eusflat-15.2015.171
  25. S. Massanet, J. V. Riera and D. Ruiz-Aguilera: On rational fuzzy implication functions. In: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Vancouver, IEEE, pp. 272-279.   DOI:10.1109/fuzz-ieee.2016.7737697
  26. S. Massanet and J. Torrens: The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets Systems 168 (2011), 1, 47-69.   DOI:10.1016/j.fss.2010.12.012
  27. S. Massanet and J. Torrens: On a new class of fuzzy implications: h-implications and generalizations. Inform. Sci. 181 (2011), 11, 2111-2127.   DOI:10.1016/j.ins.2011.01.030
  28. S. Massanet and J. Torrens: Characterization of fuzzy implication functions with a continuous natural negation satisfying the law of importation with a fixed t-norm. IEEE Trans. Fuzzy Systems 25 (2017), 1, 100-113.   DOI:10.1109/TFUZZ.2016.2551285
  29. A. Mesiarová: Approximation of k-lipschitz t-norms by strict and nilpotent k-lipschitz t-norms. Int. J. General Systems 36 (2007), 2, 205-218.   DOI:10.1080/03081070600919897
  30. A. Mesiarová-Zemánková: Continuous additive generators of continuous, conditionally cancellative triangular subnorms Inform. Sci. 339 (2016), 53-63.   DOI:10.1016/j.ins.2015.12.016
  31. H. T. Nguyen, V. Kreinovich and P. Wojciechowski: Strict Archimedean t-norms and t-conorms as universal approximators. Int. J. Approx. Reason. 18 (1998), 3, 239-249.   DOI:10.1111/j.1440-1789.1998.tb00111.x
  32. Y. Ouyang, J. Fang and J. Li: A conditionally cancellative left-continuous t-norm is not necessarily continuous. Fuzzy Sets Systems 157 (2006), 17, 2328-2332.   DOI:10.1016/j.fss.2006.03.016
  33. M. Petrík: Convex combinations of strict t-norms. Soft Computing 14 (2010), 10 1053-1057.   DOI:10.1007/s00500-009-0484-3
  34. M. Petrík and P. Sarkoci: Continuous weakly cancellative triangular subnorms: I. Their webgeometric properties. Fuzzy Sets Systems 332 (2018), 93-110, theme: Aggregation and Operators.   DOI:10.1016/j.fss.2017.04.010
  35. N. R. Vemuri and B. Jayaram: Homomorphisms on the monoid of fuzzy implications and the iterative functional equation $I(x, I(x,y))=I(x, y)$. Inform. Sci. 298 (2015), 1-21.   DOI:10.12659/MSM.892289
  36. H. Wu and Y. She: Cancellation laws for triangular norms on product lattices. Fuzzy Sets Systems 473 (2023), 108730.   DOI:10.1016/j.fss.2023.108730
  37. R. R. Yager: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 1-4, 193-216.   DOI:10.1016/j.ins.2003.04.001
  38. H. Zhou: Characterizations of fuzzy implications generated by continuous multiplicative generators of t-norms. IEEE Trans. Fuzzy Systems 29 (2021), 10, 2988-3002.   DOI:10.1109/TFUZZ.2020.3010616