Kybernetika 61 no. 3, 289-347, 2025

A survey and comparative analysis of different approaches to fuzzy differential equations modeling dynamics with uncertain parameters of deterministic character

Nizami A. Gasilov and Şahin Emrah AmrahovDOI: 10.14736/kyb-2025-3-0289

Abstract:

Dynamics containing deterministic uncertainties can be modeled with fuzzy differential equations. Unlike classical differential equations, fuzzy differential equations lack a unified interpretation and theoretical foundation, as researchers adopt different approaches to fuzziness, solution concepts, and underlying mathematical structures. The main reason is whether the fuzzy function derivative is used in the equation in question and, if it is used, what meaning it carries. Researchers who do not involve a derivative of a fuzzy number-valued function either use the extension principle, an alternative concept of fuzzy function, or transform the problem into a differential inclusion. Various definitions have been used in studies involving the derivatives of fuzzy number-valued functions. The main reason is that none of the known derivatives can fully meet the requirements: either the fuzziness increases excessively, or it becomes impossible to solve higher-order equations, or unnatural assumptions must be made. In this study, we tried to classify almost all studies on fuzzy differential equations. We compared the results of studies conducted in relatively recent years, particularly in initial value and boundary value problems, using examples. We discussed the possible direction of future research on fuzzy differential equations.

Keywords:

interval differential equations, boundary value problem, bunch of functions, linear differential equations, fuzzy differential equations, initial value problem

Classification:

34B05, 93B03, 65G40

References:

  1. S. Abbasbandy, J. J. Nieto and M. Alavi: Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26 (2005), 5, 1337-1341.   DOI:10.1016/j.chaos.2005.03.018
  2. R. P. Agarwal, D. O'Regan and V. Lakshmikantham: A stacking theorem approach for fuzzy differential equations. Nonlinear Analysis: Theory, Methods Appl. 55 (2003), 3, 299-312.   DOI:10.1016/S0362-546X(03)00241-4
  3. M. Z. Ahmad, M. K. Hasan and B. De Baets: Analytical and numerical solutions of fuzzy differential equations. Inform. Sci. 236 (2013), 156-167.   DOI:10.1016/j.ins.2013.02.026
  4. M. B. Ahmadi, N. A. Kiani and N. Mikaeilvand: Laplace transform formula on fuzzy $n$th-order derivative and its application in fuzzy ordinary differential equations. Soft Comput. 18 (2014), 12, 2461-2469.   DOI:10.1007/s00500-014-1224-x
  5. A. Ahmadian, S. Salahshour, C. S. Chan and D. Baleanu: Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability. Fuzzy Sets Systems 331 (2018), 47-67.   DOI:10.1016/j.fss.2016.11.013
  6. N. Ahmady, T. Allahviranloo and E. Ahmady: A modified Euler method for solving fuzzy differential equations under generalized differentiability. Comput. Appl. Mat. 39 (2020), 1-21.   DOI:10.1007/s40314-020-1112-1
  7. Ö. Akın, T. Khaniyev, Ö. Oruç and I. B. Türkşen: An algorithm for the solution of second order fuzzy initial value problems. Expert Systems Appl. 40 (2013), 953-957.   DOI:10.1016/j.eswa.2012.05.052
  8. M. Akram, G. Muhammad, T. Allahviranloo and W. Pedrycz: Solution of initial-value problem for linear third-order fuzzy differential equations. Comput. Appl. Math. 41 (2022), 8, 398.   DOI:10.1007/s40314-022-02111-x
  9. A. Alamin, K. H. Gazi and S. P. Mondal: Solution of second order linear homogeneous fuzzy difference equation with constant coefficients by geometric approach. J. Decision Anal. Intell. Comput. 4 (2024), 1, 241-252.   DOI:10.31181/jdaic10021122024a
  10. A. Alamin, M. Rahaman and S. P. Mondal: Geometric approach for solving first order non-homogenous fuzzy difference equation. Spectrum Oper. Res. 2 (2025), 1, 61-71.   DOI:10.31181/sor2120257
  11. S. M. Alavi: A method for second-order linear fuzzy two-point boundary value problems based on the Hukuhara differentiability. Comput. Methods Differ. Equations 11 (2023), 3, 576-588.   DOI:10.22034/cmde.2022.54220.2267
  12. R. Alguliyev, R. Aliguliyev and L. Sukhostat: Method for quantitative risk assessment of cyber-physical systems based on vulnerability analysis. Kybernetika 60 (2024), 6, 779-796.   DOI:10.14736/kyb-2024-6-0779
  13. F. A. Aliev, A. A. Niftiyev and C. I. Zeynalov: Optimal synthesis problem for the fuzzy systems. Optim. Control Appl. Meth. 32 (2011), 660-667.   DOI:10.1002/oca.964
  14. R. Alikhani and M. Mostafazadeh: First order linear fuzzy differential equations with fuzzy variable coefficients. Comput. Methods Differ. Equations 9 (2021), 1, 1-21.   DOI:10.22034/cmde.2020.34127.1568
  15. T. Allahviranloo, S. Abbasbandy, N. Ahmady and E. Ahmady: Improved predictor-corrector method for solving fuzzy initial value problems. Inform. Sci. 179 (2009), 7, 945-955.   DOI:10.1016/j.ins.2008.11.030
  16. T. Allahviranloo, S. Abbasbandy and S. S. Behzadi: Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method. Soft Comput. 18 (2014), 2191-2200.   DOI:10.1007/s00500-013-1193-5
  17. T. Allahviranloo, S. Abbasbandy, S. Salahshour and A. Hakimzadeh: A new method for solving fuzzy linear differential equations. Computing 92 (2011), 181-197.   DOI:10.1007/s00607-010-0136-6
  18. T. Allahviranloo and M. B. Ahmadi: Fuzzy Laplace transforms. Soft Computing 14 (2010), 235-243.   DOI:10.1007/s00500-008-0397-6
  19. T. Allahviranloo, N. Ahmady and E. Ahmady: Numerical solution of fuzzy differential equations by predictor-corrector method. Inform. Sci. 177 (2007), 7, 1633-1647.   DOI:10.1016/j.ins.2006.09.015
  20. T. Allahviranloo, N. Ahmady and E. Ahmady: $n$th-order fuzzy linear differential equations. Inform. Sci. 178 (2008), 5, 1309-1324.   DOI:10.1016/j.ins.2007.10.013
  21. T. Allahviranloo, N. Ahmady and E. Ahmady: A method for solving nth order fuzzy linear differential equations. Int. J. Comput. Math. 86 (2009), 4, 730-742.   DOI:10.1080/00207160701704564
  22. T. Allahviranloo and M. Chehlabi: Solving fuzzy differential equations based on the length function properties. Soft Comput. 19 (2015), 307-320.   DOI:10.1007/s00500-014-1254-4
  23. T. Allahviranloo, Z. Gouyandeh, A. Armand and A. Hasanoglu: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Systems 265 (2015), 1-23.   DOI:10.1016/j.fss.2014.11.009
  24. T. Allahviranloo and M. A. Kermani: Numerical methods for fuzzy linear partial differential equations under new definition for derivative. Iranian J. Fuzzy Systems 7 (2010), 3, 33-50.   DOI:10.22111/ijfs.2010.187
  25. T. Allahviranloo, N. A. Kiani and M. Barkhordari: Toward the existence and uniqueness of solutions of second-order fuzzy differential equations. Inform. Sci. 179 (2009), 8, 1207-1215.   DOI:10.1016/j.ins.2008.11.004
  26. T. Allahviranloo, N. A. Kiani and N. Motamedi: Solving fuzzy differential equations by differential transformation method. Inform. Sci. 179 (2009), 7, 956-966.   DOI:10.1016/j.ins.2008.11.016
  27. T. Allahviranloo, M. Shafiee and Y. Nejatbakhsh: A note on "Fuzzy differential equations and the extension principle". Inform. Sci. 179 (2009), 2049-2051.   DOI:10.1016/j.ins.2009.02.001
  28. O. Abu Arqub, M. Al-Smadi, S. Momani and T. Hayat: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20 (2016), 3283-3302.   DOI:10.1007/s00500-015-1707-4
  29. Ş. E. Amrahov and I. Askerzade: Strong solutions of the fuzzy linear systems. CMES: Computer Model. Engrg. Sci. 76 (2011), 3-4, 207-216.   DOI:10.3970/cmes.2011.076.207
  30. Ş. E. Amrahov, N. A. Gasilov and A. G. Fatullayev: A new approach to a fuzzy time-optimal control problem. CMES: Computer Model. Engrg. Sci. 99 (2014), 5, 351-369.   DOI:10.3970/cmes.2014.099.351
  31. Ş. E. Amrahov, A. Khastan, N. Gasilov and A. G. Fatullayev: Relationship between Bede-Gal differentiable set-valued functions and their associated support functions. Fuzzy Sets Systems 295 (2016), 57-71.   DOI:10.1016/j.fss.2015.12.002
  32. M. S. Arif, W. Shatanawi and Y. Nawaz: A computational time integrator for heat and mass transfer modeling of boundary layer flow using fuzzy parameters. Partial Differ. Equations Appl. Math.13 (2025), 101113.   DOI:10.1016/j.padiff.2025.101113
  33. S. Ashraf, I. Ahmed and H. Rashmanlou: A new technique to solve fuzzy differential equations. J. Intell. Fuzzy Systems 34 (2018), 4, 2171-2176.   DOI:10.3233/JIFS-171
  34. N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Pub. Co., 2007.   CrossRef
  35. E. Babolian, H. Sadeghi and S. Javadi: Numerically solution of fuzzy differential equations by Adomian method. Appl. Math. Computation 149 (2004), 2, 547-557.   DOI:10.1016/S0096-3003(03)00160-7
  36. P. Balasubramaniam and S. Muralisankar: Existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral functional differential equation. Computers Math. Appl. 42 (2001), 6-7, 961-967.   DOI:10.1016/S0898-1221(01)00212-7
  37. H. T. Banks and M. Q. Jacobs: A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970), 246-272.   DOI:10.1016/0022-247X(70)90078-8
  38. L. C. Barros, L. T. Gomes and P. A. Tonelli: Fuzzy differential equations: An approach via fuzzification of the derivative operator. Fuzzy Sets Systems 230 (2013), 39-52.   DOI:10.1016/j.fss.2013.03.004
  39. L. C. de Barros and F. Santo Pedro: Fuzzy differential equations with interactive derivative. Fuzzy Sets Systems 309 (2017), 64-80.   DOI:10.1016/j.fss.2016.04.002
  40. P. Bartwal, H. Upreti, A. K. Pandey, N. Joshi and B. P. Joshi: Application of modified Fourier's law in a fuzzy environment to explore the tangent hyperbolic fluid flow over a non-flat stretched sheet using the LWCM approach. Int. Commun. Heat Mass Transfer 153 (2024), 107332.   DOI:10.1016/j.icheatmasstransfer.2024.107332
  41. K. Barzinji, N. Maan and N. Aris: Linear fuzzy delay differential system: Analysis on stability of steady state. Matematika 30 (2014), 1a, 1-7.   DOI:10.11113/matematika.v30.n0.734
  42. B. Bede: A note on two-point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Systems 157 (2006), 986-989.   DOI:10.1016/j.fss.2005.09.006
  43. B. Bede: Note on Numerical solutions of fuzzy differential equations by predictor-corrector method. Inform. Sci. 178 (2008), 7, 1917-1922.   DOI:10.1016/j.ins.2007.11.016
  44. B. Bede and S. G. Gal: Almost periodic fuzzy-number-valued functions. Fuzzy Sets Systems 147 (2004), 385-403.   DOI:10.1016/j.fss.2003.08.004
  45. B. Bede and S. G. Gal: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Systems 151 (2005), 581-599.   DOI:10.1016/j.fss.2004.08.001
  46. B. Bede, I. J. Rudas and A. L. Bencsik: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177 (2007), 1648-1662.   DOI:10.1016/j.ins.2006.08.021
  47. B. Bede and I. J. Rudas: Shooting method for fuzzy two-point boundary value problems. In: Proc. of 2012 Annual Meeting of the NAFIPS (North American Fuzzy Information Processing Society), (2012), pp. 1-4.   DOI:10.1109/NAFIPS.2012.6290986.
  48. B. Bede and L. Stefanini: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Systems 230 (2013), 119-141.   DOI:10.1016/j.fss.2012.10.003
  49. C. Bejines: Aggregation of fuzzy vector spaces. Kybernetika 59 (2023), 5, 752-767.   DOI:10.14736/kyb-2023-5-0752
  50. A. M. Bertone, R. M. Jafelice, L. C. de Barros and R. C. Bassanezi: On fuzzy solutions for partial differential equations. Fuzzy Sets Systems 219 (2013), 68-80.   DOI:10.1016/j.fss.2012.12.002
  51. T. G. Bhaskar, V. Lakshmikantham and V. Devi: Revisiting fuzzy differential equations. Nonlinear Analysis: Theory Methods Appl. 58 (2004), 3-4, 351-358.   DOI:10.1016/j.na.2004.05.007
  52. R. Bhattacharyya and B. K. Jha: Analyzing fuzzy boundary value problems: a study on the influence of mitochondria and ER fluxes on calcium ions in neuron cells. J. Bioenergetics Biomembranes 56 (2024), 1, 15-29.   DOI:10.1007/s10863-023-09994-3
  53. V. I. Blagodatskikh and A. F. Filippov: Differential inclusions and optimal control. In: Proc. Steklov Inst. Math. 169 (1986), 199-259.   CrossRef
  54. J. J. Buckley and T. Feuring: Introduction to fuzzy partial differential equations. Fuzzy Sets Systems 105 (1999), 241-248.   DOI:10.1016/S0165-0114(98)00323-6
  55. J. J. Buckley and T. Feuring: Fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 43-54.   DOI:10.1016/S0165-0114(98)00141-9
  56. J. J. Buckley and T. Feuring: Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy Sets Syst. 121 (2001), 247-255.   DOI:10.1016/S0165-0114(00)00028-2
  57. J. J. Buckley, T. Feuring and Y. Hayashi: Linear systems of first order ordinary differential equations: Fuzzy initial conditions. Soft Computing 6 (2002), 415-421.   DOI:10.1007/s005000100155
  58. V. M. Cabral and L. C. Barros: Fuzzy differential equation with completely correlated parameters. Fuzzy Sets Systems 265 (2015), 86-98.   DOI:10.1016/j.fss.2014.08.007
  59. V. M. Cabral and L. C. Barros: On differential equations with interactive fuzzy parameter via t-norms. Fuzzy Sets Systems 358 (2019), 97-107.   DOI:10.1016/j.fss.2018.07.010
  60. T. Ceylan: On interactive solution for two point fuzzy boundary value problem. J. Universal Math. 7 (2024), 2, 85-98.   DOI:10.33773/jum.1375017
  61. T. Ceylan and N. Altinisik: Two point fuzzy boundary value problem with eigenvalue parameter contained in the boundary condition. Malaya J. Matematik 6 (2018), 4, 766-773.   DOI:10.26637/MJM0604/0010
  62. Y. Chalco-Cano and H. Román-Flores: On the new solution of fuzzy differential equations. Chaos Solitons Fractals 38 (2008), 1, 112-119.   DOI:10.1016/j.chaos.2006.10.043
  63. Y. Chalco-Cano and H. Román-Flores: Comparison between some approaches to solve fuzzy differential equations. Fuzzy Sets Systems 160 (2009), 11, 1517-1527.   DOI:10.1016/j.fss.2008.10.002
  64. Y. Chalco-Cano and H. Román-Flores: Some remarks on fuzzy differential equations via differential inclusions. Fuzzy Sets Systems 230 (2013), 3-20.   DOI:10.1016/j.fss.2013.04.017
  65. Y. Chalco-Cano, H. Román-Flores and M. D. Jimenez-Gamero: Generalized derivative and $\pi$-derivative for set-valued functions. Inform. Sci. 181 (2011), 11, 2177-2188.   DOI:10.1016/j.ins.2011.01.023
  66. S. L. Chang and L. A. Zadeh: On fuzzy mapping and control. IEEE Trans. Systems Man Cybernet. 2 (1972), 330-340.   DOI:10.1109/TSMC.1972.5408553.
  67. M. Chehlabi: Continuous solutions to a class of first-order fuzzy differential equations with discontinuous coefficients. Comput. Appl. Math. 37 (2018), 5058-5081.   DOI:10.1007/s40314-018-0612-8
  68. M. Chehlabi and T. Allahviranlo: Positive or negative solutions to first-order fully fuzzy linear differential equations under generalized differentiability. Appl. Soft Comput. 70 (2018), 359-370.   DOI:10.1016/j.asoc.2018.05.040
  69. M. Chen and C. Han: Some topological properties of solutions to fuzzy differential systems. Inform. Sci. 197 (2012), 207-214.   DOI:10.1016/j.ins.2012.02.013
  70. M. Chen, C. Wu, X. Xue and G. Liu: On fuzzy boundary value problems. Inform. Sci. 178 (2008), 1877-1892.   DOI:10.1016/j.ins.2007.11.017
  71. M. Chen, C. Wu, X. Xue and G. Liu: Two-point boundary value problems of undamped uncertain dynamical systems. Fuzzy Sets Systems 159 (2008), 2077-2089.   DOI:10.1016/j.fss.2008.03.006
  72. Y. Y. Chen, Y. T. Chang and B. S. Chen: Fuzzy solutions to partial differential equations: Adaptive approach. IEEE Trans. Fuzzy Systems 17 (2009), 116-127.   DOI:10.1109/TFUZZ.2008.2005010
  73. H. Cruz-Suarez, R. Montes-de-Oca and R. I. Ortega-Gutiarrez: An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1, 160-178.   DOI:10.14736/kyb-2023-1-0160
  74. W. Congxin and S. Shiji: Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inform. Sci. 108 (1998), 1-4, 123-134.   DOI:10.1016/S0020-0255(97)10064-0
  75. H. G. Citil: Comparisons of the exact and the approximate solutions of second-order fuzzy linear boundary value problems. Miskolc Math. Notes 20 (2019), 2, 823-837.   DOI:10.18514/MMN.2019.2627
  76. H. G. Citil: Important notes for a fuzzy boundary value problem. Appl. Math. Nonlinear Sci. 4 (2019), 2, 305-314.   DOI:10.2478/AMNS.2019.2.00027
  77. A. A. Dahalan, M. S. Muthuvalu and J. Sulaiman: Successive over relaxation method in solving two-point fuzzy boundary value problems. AIP Conf. Proc. 1522 (2013), 116-124.   DOI:10.1063/1.4801113
  78. R. Dai and M. Chen: On the structural stability for two-point boundary value problems of undamped fuzzy differential equations. Fuzzy Sets Systems 400 (2020), 134-146.   DOI:10.1016/j.fss.2022.03.014
  79. R. Dai and M. Chen: The structure stability of periodic solutions for first-order uncertain dynamical systems. Fuzzy Sets Systems 453 (2023), 95-114.   DOI:10.1016/j.fss.2020.01.009
  80. R. Dai, M. Chen and H. Morita: Fuzzy differential equations for universal oscillators. Fuzzy Sets Systems 347 (2018), 89-104.   DOI:10.1016/j.fss.2018.01.013
  81. P. Darabi, S. Moloudzadeh and H. Khandani: A numerical method for solving first-order fully fuzzy differential equation under strongly generalized H-differentiability. Soft Computing 20 (2016), 4085-4098.   DOI:10.1007/s00500-015-1743-0
  82. P. Diamond: Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 8 (2000), 5, 583-590.   DOI:10.1109/91.873581
  83. P. Diamond: Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Sets Systems 129 (2002), 1, 65-71.   DOI:10.1016/S0165-0114(01)00158-0
  84. Z. Ding, M. Ma and A. Kandel: Existence of the solutions of fuzzy differential equations with parameters. Inform. Sci. 99 (1997), 3-4, 205-217.   DOI:10.1016/S0020-0255(96)00279-4
  85. A. K. Dizicheh, S. Salahshour and F. B. Ismail: A note on Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Systems 233 (2013, 96-100.   DOI:10.1016/j.fss.2013.03.006
  86. T. Donchev and A. Nosheen: Fuzzy functional differential equations under dissipative-type conditions. Ukrainian Math. J. 65 (2013), 6, 873-883.   DOI:10.1007/s11253-013-0824-4
  87. D. Dubois and H. Prade: Towards fuzzy differential calculus: Part 3, Differentiation. Fuzzy Sets Systems 8 (1982), 225-233.   DOI:10.1016/S0165-0114(82)80001-8
  88. S. Effati and M. Pakdaman: Artificial neural network approach for solving fuzzy differential equations. Information Sciences 180(8) (2010) 1434-1457.   DOI:10.1016/j.ins.2009.12.016
  89. E. ElJaoui, S. Melliani and L. S. Chadli: Solving second-order fuzzy differential equations by the fuzzy Laplace transform method. Advances Difference Equations 2015 (2015), 1-14.   DOI:10.1186/s13662-015-0414-x
  90. I. R. Epstein and Y. Luo: Differential delay equations in chemical kinetics. Nonlinear models: The cross-shaped phase diagram and the Oregonator. J. Chemical Physics 95 (1991), 1, 244-254.   DOI:10.1063/1.461481
  91. U. M. R. Epuganti and G. B. Tenali: Solutions of non-homogeneous linear set-valued differential equations. Nonlinear Analysis: Real World Applications 87 (2026), 104411.   DOI:10.1016/j.nonrwa.2025.104411
  92. E. Esmi, D. E. Sanchez, V. F. Wasques and L. C. Barros: Solutions of higher order linear fuzzy differential equations with interactive fuzzy values. Fuzzy Sets Systems 419 (2021), 122-140.   DOI:10.1016/j.fss.2020.07.019
  93. M. H. Farahi and S. Barati: Fuzzy time-delay dynamical systems. J. Math. Computer Sci. 2 (2011), 1, 44-53.   DOI:10.22436/jmcs.002.01.06
  94. A. Farajzadeh, A. Hosseinpour and W. Kumam: On boundary value problems in normed fuzzy spaces. Thai J. Math. 20 (2022), 1, 305-313.   DOI:10.14456/tjm.2022.26
  95. O. S. Fard, A. Esfahani and A. V. Kamyad: On solution of a class of fuzzy BVPs. Iranian J. Fuzzy Systems 9 (2012), 1, 49-60.   DOI:10.22111/ijfs.2012.225
  96. O. S. Fard and N. Ghal-Eh: Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients. Inform. Sci. 181 (2011), 4765-4779.   DOI:10.1016/j.ins.2011.06.007
  97. A. G. Fatullayev and C. Köroglu: Numerical solving of a boundary value problem for fuzzy differential equations. CMES: Computer Model. Engrg. Sci. 86 (2012), 1, 39-52.   DOI:10.3970/cmes.2012.086.039
  98. A. G. Fatullayev, E. Can and C. Köroglu: Numerical solution of a boundary value problem for a second order fuzzy differential equation. TWMS J. Pure Appl. Math. 4 (2013), 2, 169-176.   CrossRef
  99. A. G. Fatullayev, N. A. Gasilov and S. Emrah Amrahov: Numerical solution of linear inhomogeneous fuzzy delay differential equations. Fuzzy Optim. Decision Making 18 (2019), 315-326.   DOI:10.1007/s10700-018-9296-1
  100. D. Filev and P. Angelov: Fuzzy optimal control. Fuzzy Sets Systems 47 (1992), 2, 151-156.   DOI:10.1016/0165-0114(92)90172-Z
  101. T. K. Fook and Z. B. Ibrahim: Block backward differentiation formulas for solving second order fuzzy differential equations. Matematika 33 (2017), 2, 215-226.   DOI:10.11113/matematika.v33.n2.868
  102. M. Friedman, M. Ming and A. Kandel: On the validity of the Peano theorem for fuzzy differential equations. Fuzzy Sets Systems 86 (1997), 3, 331-334.   DOI:10.1016/S0165-0114(96)00126-1
  103. H. Garg: A novel approach for solving fuzzy differential equations using Runge-Kutta and Biogeography-based optimization. J. Intell. Fuzzy Systems 30 (2016), 4, 2417-2429.   DOI:10.3233/IFS-152010
  104. N. A. Gasilov and Ş. E. Amrahov: Solving a nonhomogeneous linear system of interval differential equations. Soft Computing 22 (2018), 12, 3817-3828.   DOI:10.1007/s00500-017-2818-x
  105. N. A. Gasilov, Ş. E. Amrahov, A. G. Fatullayev, H. I. Karakas and O. Akin: A geometric approach to solve fuzzy linear systems. CMES: Computer Model. Engrg. Sci. 75 (2011), 3-4, 189-203.   DOI:10.3970/cmes.2011.075.189
  106. N. A. Gasilov, Ş. E. Amrahov, A. G. Fatullayev, H. I. Karakas and O. Akin: Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis. CMES: Computer Model. Engrg. Sci. 88 (2012), 2, 93-106.   DOI:10.3970/cmes.2012.088.093
  107. N. A. Gasilov, Ş. E. Amrahov and A. G. Fatullayev: A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci. 5 (2011), 3, 484-495.   CrossRef
  108. N. Gasilov, Ş. E. Amrahov and A. G. Fatullayev: Linear differential equations with fuzzy boundary values. In: Proc. 5th International Conference on Application of Information and Communication Technologies, IEEE 2011, pp. 696-700.   DOI:10.1109/ICAICT.2011.6111018
  109. N. A. Gasilov, Ş. E. Amrahov and A. G. Fatullayev: On solutions of initial-boundary value problem for fuzzy partial differential equations. In: Proc. 7th Int. Conf. on Application of Information and Communication Technologies (AICT2013), Baku 2013, pp. 410-412.   DOI:10.1109/ICAICT.2013.6722709
  110. N. Gasilov, Ş. E. Amrahov and A. G. Fatullayev: Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Systems 257 (2014), 169-183.   DOI:10.1016/j.fss.2013.08.008
  111. N. A. Gasilov, Ş. E. Amrahov, A. G. Fatullayev and I. F. Hashimoglu: Solution method for a boundary value problem with fuzzy forcing function. Inform. Sci. 317 (2015), 349-368.   DOI:10.1016/j.ins.2015.05.002
  112. N. A. Gasilov, A. G. Fatullayev and Ş. E. Amrahov: Solution of non-square fuzzy linear systems. J. Multiple-valued Logic Soft Computing 20 (2013), 3-4, 221-237.   CrossRef
  113. N. A. Gasilov, A. G. Fatullayev and Ş. E. Amrahov: Solution method for a non-homogeneous fuzzy linear system of differential equations. Appl. Soft Comput. 70 (2018), 225-237.   DOI:10.1016/j.asoc.2018.05.010
  114. N. A. Gasilov, A. G. Fatullayev, Ş. E. Amrahov and A. Khastan: A new approach to fuzzy initial value problem. Soft Comput. 18 (2014), 217-225.   DOI:10.1007/s00500-013-1081-z
  115. N. A. Gasilov, Ş. E. Amrahov and A. G. Fatullayev: On a solution of the fuzzy Dirichlet problem for the heat equation. Int. J. Thermal Sci. 103 (2016), 67-76.   DOI:10.1016/j.ijthermalsci.2015.12.008
  116. N. A. Gasilov and Ş. E. Amrahov: On differential equations with interval coefficients. Math. Methods Appl. Sci. 43 (2020), 4, 1825-1837.   DOI:10.1002/mma.6006
  117. N. A. Gasilov, I. F. Hashimoglu, Ş. E. Amrahov and A. G. Fatullayev: A new approach to non-homogeneous fuzzy initial value problem. CMES: Computer Model. Engrg. Sci. 85 (2012), 4, 367-378.   DOI:10.3970/cmes.2012.085.367
  118. N. A. Gasilov and M. Kaya: A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters. Int. J. Comput. Methods 16 (2019), 7, Article 1850115.   DOI:10.1142/S0219876218501153
  119. D. N. Georgiou, J. J. Nieto and R. Rodríguez-López: Initial value problems for higher-order fuzzy differential equations. Nonlinear Analysis: Theory, Methods Appl. 63 (2005), 4, 587-600.   DOI:0.1016/j.na.2005.05.020
  120. B. Ghazanfari, S. Niazi and A. G. Ghazanfari: Linear matrix differential dynamical systems with fuzzy matrices. Appl. Math. Modell. 36 (2012), 348-356.   DOI:10.1016/j.apm.2011.05.054
  121. B. Ghazanfari and A. Shakerami: Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Systems 189, 1, 74-91.   DOI:10.1016/j.fss.2011.06.018
  122. N. Gholami, T. Allahviranloo, S. Abbasbandy and N. Karamikabir: Fuzzy reproducing kernel space method for solving fuzzy boundary value problems. Math. Sci. 13 (2019), 97-103.   DOI:10.1007/s40096-019-0282-8
  123. L. T. Gomes and L. C. Barros: Fuzzy calculus via extension of the derivative and integral operators and fuzzy differential equations. In: Proc. of 2012 Annual Meeting of the NAFIPS (North American Fuzzy Information Processing Society), IEEE 2012, pp. 1-5.   DOI:10.1109/NAFIPS.2012.6290965
  124. D. Gopal, J. Martinez-Moreno and N. Özgür: On fixed figure problems in fuzzy metric spaces. Kybernetika 59 (2023), 1, 110-129.   DOI:10.14736/kyb-2023-1-0110
  125. D. Gopal, J. Martinez-Moreno and J. R. Rodriguez-López: Asymptotic fuzzy contractive mappings in fuzzy metric spaces. Kybernetika 60 (2024, 3, 394-411.   DOI:10.14736/kyb-2024-3-0394
  126. M. Guo, X. Peng and Y. Xu: Oscillation property for fuzzy delay differential equations. Fuzzy Sets Systems 200 (2012), 25-35.   DOI:10.1016/j.fss.2012.01.011
  127. M. Hakim and R. Zitouni: An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem. Kybernetika 60 (2024), 3, 271-292.   DOI:10.14736/kyb-2024-3-0271
  128. J. K. Hale: Functional Differential Equations. Springer, New York 1971.   DOI:10.1007/978-1-4615-9968-5
  129. M. S. Hashemi, J. Malekinagad and H. R. Marasi: Series solution of the system of fuzzy differential equations. Adv. Fuzzy Systems (2012) Article ID 407647, 16 pages.   DOI:10.1155/2012/407647
  130. A. Harir, H. El Harfi, S. Melliani and L. C. Chadli: Fuzzy solutions of the SIR models using VIM. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 30 (2022), 01, 43-61.   DOI:10.1142/S0218488522500039
  131. N. V. Hoa, T. Allahviranloo and H. Vu: On the stability for the fuzzy initial value problem. J. Intell. Fuzzy Systems 39 (2020), 5, 7747-7755.   DOI:10.3233/JIFS-201109
  132. N. V. Hoa, P. V. Tri, T. T. Dao and I. Zelinka: Some global existence results and stability theorem for fuzzy functional differential equations. J. Intell. Fuzzy Systems 28 (2015), 1, 393-409.   DOI:10.3233/IFS-141315
  133. M. M. Hosseini, F. Saberirad and B. Davvaz: Numerical solution of fuzzy differential equations by variational iteration method. Int. J. Fuzzy Systems \text{18} (2016), 875-882.   DOI:10.1007/s40815-016-0156-2
  134. M. Hukuhara: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967), 205-223.   CrossRef
  135. E. Hüllermeier: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 5 (1997), 2, 117-137.   DOI:10.1142/S0218488597000117
  136. E. Hüllermeier: Numerical methods for fuzzy initial value problems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 7 (1999), 5, 439-461.   DOI:10.1142/S0218488599000404
  137. S. Isa, Z. Abdul Majid, F. Ismail and F. Rabiei: Diagonally implicit multistep block method of order four for solving fuzzy differential equations using Seikkala derivatives. Symmetry 10 (2018), 2, 42.   DOI:10.3390/sym10020042
  138. R. Isaks: Properties of quantum logic maps as fuzzy relations on a set of all symmetric and idempotent binary matrices. Kybernetika 60 (2024), 5, 682-689.   DOI:10.14736/kyb-2024-5-0682
  139. R. Jafari and S. Razvarz: Solution of fuzzy differential equations using fuzzy Sumudu transforms. Math. Comput. Appl. 23 (2018), 1, 5.   DOI:10.3390/mca23010005
  140. H. Jafari, M. Saeidy and D. Baleanu: The variational iteration method for solving n-th order fuzzy differential equations. Central European J. Physics 10 (2012), 76-85.   DOI:10.2478/s11534-011-0083-7
  141. R. Jafari, W. Yu, X. Li and S. Razvarz: Numerical solution of fuzzy differential equations with Z-numbers using Bernstein neural networks. Int. J. Comput. Intell. Systems 10 (2017), 1, 1226-1237.   DOI:10.2991/ijcis.10.1.81
  142. R. M. Jafelice, C. G. Almeida, J. F. Meyer and H. L. Vasconcelos: Fuzzy parameter in a partial differential equation model for population dispersal of leaf-cutting ants. Nonlinear Analysis: Real World Appl. 12 (2011), 3397-3412.   DOI:10.1016/j.nonrwa.2011.06.003
  143. R. M. Jafelice, L. C. Barros, R. C. Bassanezi and F. Gomide: Fuzzy modeling in symptomatic HIV virus infected population. Bull. Math. Biology 66 (2004), 6, 1597-1620.   DOI:10.1016/j.bulm.2004.03.002
  144. R. M. Jafelice, L. C. Barros and R. C. Bassanezi: A fuzzy delay differential equation model for HIV dynamics. In: Proc. IFSA/EUSFLAT Conference 2009, pp. 265-270.   CrossRef
  145. N. Jamal, M. Sarwar, S. Hussain and A. Mukheimer: Existence criteria for the unique solution of first order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers. Fractals 30 (2022), 8, 2240221.   DOI:10.1142/S0218348X22402216
  146. N. Jamal, M. Sarwar and M. M. Khashan: Hyers-Ulam stability and existence criteria for the solution of second order fuzzy differential equations. J. Function Spaces 2021 (2021), 1, 6664619.   DOI:10.1155/2021/6664619
  147. N. Jamal, M. Sarwar, N. Mlaiki and A. Aloqaily: Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces. AIMS Mathematics 9 (2024), 2, 2695-2721.   DOI:10.3934/math.2024134
  148. A. F. Jameel, N. R. Anakira, M. M. Rashidi, A. K. Alomari, A. Saaban and M. A. Shakhatreh: Differential transformation method for solving high order fuzzy initial value problems. Italian J. Pure Appl. Math. 39 (2018) 194-208.   DOI:10.12871/ijpamv39n2p194
  149. A. Jameel, N. R. Anakira, A. K. Alomari, I. Hashim and M. A. Shakhatreh: Numerical solution of $n$th order fuzzy initial value problems by six stages. J. Nonlinear Sci. Appl. 9 (2016), 2, 627-640.   DOI:10.22436/jnsa.009.02.26
  150. A. F. Jameel, A. Saaban and H. H. Zureigat: Numerical solution of second-order fuzzy nonlinear two-point boundary value problems using combination of finite difference and Newton's methods. Neural Computing Appl. 30 (2018), 3167-3175.   DOI:10.1007/s00521-017-2893-z
  151. L. Jamshidi and L. Avazpour: Solution of the fuzzy boundary value differential equations under generalized differentiability by shooting method. J. Fuzzy Set Valued Analysis (2012), Article ID jfsva-00136, 19 pages.   DOI:10.5899/2012/jfsva-00136
  152. C. Jiang and D. H. Zhou: Fault detection and identification for uncertain linear time-delay systems. Computers Chemical Engrg. 30, (2005), 2, 228-242.   DOI:10.1016/j.compchemeng.2005.08.012
  153. Z. Jin and J. Wu: On the Ulam stability of fuzzy differential equations. AIMS Mathematics 5 (2020), 6, 6006-6019.   DOI:10.3934/math.2020384
  154. O. Kaleva: Fuzzy differential equations. Fuzzy Sets Systems 24 (1987), 301-317.   DOI:10.1016/0165-0114(87)90029-7
  155. O. Kaleva: The Cauchy problem for fuzzy differential equations. Fuzzy Sets Systems 35 (1990), 389-396.   DOI:10.1016/0165-0114(90)90010-4
  156. O. Kaleva: The Peano theorem for fuzzy differential equations revisited. Fuzzy Sets Systems 98 (1998), 1, 147-148.   DOI:10.1016/S0165-0114(97)00415-6
  157. O. Kaleva: A note on fuzzy differential equations. Nonlinear Anal. 64 (2006) 895-900.   DOI:10.1016/j.na.2005.01.003
  158. K. Kanagarajan and R. Suresh: Runge-Kutta method for solving fuzzy differential equations under generalized differentiability. Comput. Appl. Math. 37 (2018), 1294-1305.   DOI:10.1007/s40314-016-0397-6
  159. A. Kandel and W. J. Byatt: Fuzzy differential equations. In: Proc. Int. Conf. on Cybernetics and Society, Tokyo 1978, pp. 213-1216.   CrossRef
  160. A. Karami, E. Rezaei, M. Shahhosseni and M. Aghakhani: Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. Thermal Sci. 53 (2012), 141-147.   DOI:10.1016/j.ijthermalsci.2011.10.016
  161. S. Karpagappriya, N. Alessa, P. Jayaraman and K. Loganathan: A novel approach for solving fuzzy differential equations using cubic spline method. Math. Problems Engrg. 2021 (2021), 1, 5553732.   DOI:10.1155/2021/5553732
  162. N. Kartli, E. Bostanci and M. S. Guzel: Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227.   DOI:10.1007/s00607-024-01319-5
  163. A. Khastan, F. Bahrami and K. Ivaz: New results on multiple solutions for $n$th-order fuzzy differential equations under generalized differentiability. Boundary Value Problems (2009), Article ID 395714.   DOI:10.1155/2009/395714
  164. A. Khastan and K. Ivaz: Numerical solution of fuzzy differential equations by Nyström method. Chaos Solitons Fractals 41 (2009), 2, 859-868.   DOI:10.1016/j.chaos.2008.04.012
  165. A. Khastan and J. J. Nieto: A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal. 72 (2010), 3583-3593.   DOI:10.1016/j.na.2009.12.038
  166. A. Khastan, J. J. Nieto and R. Rodríguez-López: Fuzzy delay differential equations under generalized differentiability. Inform. Sci. 275 (2014), 145-167.   DOI:10.1016/j.ins.2014.02.027
  167. A. Khastan, J. J. Nieto and R. Rodríguez-López: Variation of constant formula for first order fuzzy differential equations. Fuzzy Sets Systems 177 (2011), 20-33.   DOI:10.1016/j.fss.2011.02.020
  168. A. Khastan, J. J. Nieto and R. Rodríguez-López: Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability. Inform. Sci. 222 (2013), 544-558.   DOI:10.1016/j.ins.2012.07.057
  169. A. Khastan, J. J. Nieto and R. Rodríguez-López: Fuzzy delay differential equations under generalized differentiability. Inform. Sci. 275 (2014), 145-167.   DOI:10.1016/j.ins.2014.02.027
  170. A. Khastan, I. Perfilieva and Z. Alijani: A new fuzzy approximation method to Cauchy problems by fuzzy transform. Fuzzy Sets Systems 288 (2016), 75-95.   DOI:10.1016/j.fss.2015.01.001
  171. A. Khastan and R. Rodríguez-López: On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Systems 295 (2016), 114-135.   DOI:10.1016/j.fss.2015.06.005
  172. A. Khastan and R. Rodríguez-López: On periodic solutions to first order linear fuzzy differential equations under differential inclusions approach. Inform. Sci. 322 (2015, 31-50.   DOI:10.1016/j.ins.2015.06.003
  173. A. Khastan and R. Rodríguez-López: On linear fuzzy differential equations by differential inclusions' approach. Fuzzy Sets Systems 387 (2020), 49-67.   DOI:10.1016/j.fss.2019.05.014
  174. E. Khodadadi, M. Karabacak and E. Çelik: Numerical solutions of fuzzy linear fractional differential equations with Laplace transforms under Caputo-type H-differentiability. J. Math. 2025 (2025), 1, 9998269.   DOI:10.1155/jom/9998269
  175. O. D. Kichmarenko and N. V. Skripnik: Averaging of fuzzy differential equations with delay. Nonlinear Oscillations 11 (2008), 3, 331-344.   DOI:10.1007/s11072-009-0034-z
  176. P. E. Kloeden: Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Sets Systems 44 (1991), 1, 161-163.   DOI:10.1016/0165-0114(91)90041-N
  177. P. E. Kloeden and T. Lorenz: Fuzzy differential equations without fuzzy convexity. Fuzzy Sets Systems 230 (2013) 65-81.   DOI:10.1016/j.fss.2012.01.012
  178. T. A. Komleva, A. V. Plotnikov and N. V. Skripnik: Differential equations with set-valued solutions. Ukrainian Math. J. 60 (2008), 10, 1540-1556.   DOI:10.1007/s11253-009-0150-z
  179. I. Kramosil and J. Michálek: Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344.   CrossRef
  180. Y. Kuang: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston 1993.   CrossRef
  181. V. Laksmikantham: Set differential equations versus fuzzy differential equations. Appl. Math. Comput. 164 (2005), 2, 277-294.   DOI:10.1016/j.amc.2004.06.068
  182. V. Lakshmikantham and S. Leela: Stability theory of fuzzy differential equations via differential inequalities. Math. Inequalit. Appl. 2 (1999), 551-559.   DOI:10.7153/mia-02-46
  183. V. Lakshmikantham, K. N. Murty and J. Turner: Two-point boundary value problems associated with non-linear fuzzy differential equations. Math. Inequalit. Appl. 4 (2001), 527-533.   CrossRef
  184. V. Lakshmikantham and J. J. Nieto: Differential equations in metric spaces: an introduction and an application to fuzzy differential equations. Dynamics Continuous Discrete Impulsive Systems: Series A 10 (2003), 6, 991-1000.   CrossRef
  185. D. Li, M. Chen and X. Xue: Two-point boundary value problems of uncertain dynamical systems. Fuzzy Sets Systems 179 (2011), 50-61.   DOI:10.1016/j.fss.2011.05.012
  186. J. Li, A. Zhao and J. Yan: The Cauchy problem of fuzzy differential equations under generalized differentiability. Fuzzy Sets Systems 200 (2012), 1-24.   DOI:10.1016/j.fss.2011.10.009
  187. B. Liu: Fuzzy process, hybrid process and uncertain process. J. Uncertain Systems 2 (2008), 1, 3-16.   CrossRef
  188. H.-K. Liu: Comparison results of two-point fuzzy boundary value problems. Int. J. Comput. Math. Sci. 5 (2011), 1-7.   CrossRef
  189. R. Liu, M. Feckan, J. Wang and D. O'Regan: Ulam type stability for first-order linear and nonlinear impulsive fuzzy differential equations. Int. J. Computer Math. 99 (2022), 6, 1281-1303.   DOI:10.1080/00207160.2021.1967940
  190. R. Liu, J. Wang and D. O'Regan: Ulam type stability of first-order linear impulsive fuzzy differential equations. Fuzzy Sets Systems 400 (2020), 34-89.   DOI:10.1016/j.fss.2019.10.007
  191. X. M. Liu, J. Jiang and L. Hong: A numerical method to solve a fuzzy differential equation via differential inclusions. Fuzzy Sets Systems 404 (2021), 38-61.   DOI:10.1016/j.fss.2020.04.023
  192. H. V. Long, J. J. Nieto and N. T. K. Son: New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric spaces. Fuzzy Sets Systems 331 (2018), 26-46.   DOI:10.1016/j.fss.2016.11.008
  193. V. Lupulescu: Initial value problem for fuzzy differential equations under dissipative conditions. Inform. Sci. 178 (2008), 23, 4523-4533.   DOI:10.1016/j.ins.2008.08.005
  194. V. Lupulescu: On a class of fuzzy functional differential equations. Fuzzy Sets Systems 160 (2009), 11, 1547-1562.   DOI:10.1016/j.fss.2008.07.005
  195. V. Lupulescu and U. Abbas: Fuzzy delay differential equations. Fuzzy Optim. Decision Making 11 (2012), 1, 99-111.   DOI:10.1007/s10700-011-9112-7
  196. M. Ma, M. Friedman and A. Kandel: Numerical solutions of fuzzy differential equations. Fuzzy Sets Systems 105 (1999), 1, 133-138.   DOI:10.1016/S0165-0114(97)00233-9
  197. J. E. Macias-Diaz and S. Tomasiello: A differential quadrature-based approach a la Picard for systems of partial differential equations associated with fuzzy differential equations. J. Comput. Appl. Math. 299 (2016), 15-23.   DOI:10.1016/j.cam.2015.08.009
  198. A. Mahata, S. P. Mondal, A. Ahmadian, F. Ismail, S. Alam and S. Salahshour: Different solution strategies for solving epidemic model in imprecise environment. Complexity 2018 (2018), 1, 4902142.   DOI:10.1155/2018/4902142
  199. M. T. Malinowski: On random fuzzy differential equations. Fuzzy Sets Systems 160 (2009), 21, 3152-3165.   DOI:10.1016/j.fss.2009.02.003
  200. M. T. Malinowski: Existence theorems for solutions to random fuzzy differential equations. Nonlinear Analysis: Theory Methods Appl. 73 (2010), 6, 1515-1532.   DOI:10.1016/j.na.2010.04.049
  201. M. T. Malinowski: Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Analysis: Real World Appl. 13 (2012), 2, 860-881.   DOI:10.1016/j.nonrwa.2011.08.022
  202. M. T. Malinowski: On set differential equations in Banach spaces - A second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 1, 289-305.   DOI:10.1016/j.amc.2012.06.019
  203. M. T. Malinowski: It\^{o} type stochastic fuzzy differential equations with delay. Systems Control Lett. 61 (2012), 6, 692-701.   DOI:10.1016/j.sysconle.2012.02.012
  204. M. T. Malinowski: Some properties of strong solutions to stochastic fuzzy differential equations. Inform. Sci. 252 (2013), 62-80.   DOI:10.1016/j.ins.2013.02.053
  205. M. T. Malinowski: Stochastic fuzzy differential equations of a non-increasing type. Commun. Nonlinear Sci. Numer. Simul. 33 (2016), 99-117.   DOI:10.1016/j.cnsns.2015.07.001
  206. M. T. Malinowski and M. Michta: Stochastic fuzzy differential equations with an application. Kybernetika 47 (2011), 1, 123-143.   DOI:10.1016/0022-247X(65)90049-1
  207. A. A. Martynyuk, I. M. Stamova and V. A. Chernienko: Stability analysis of uncertain impulsive systems via fuzzy differential equations. Int. J. Systems Sci. 51 (2020), 4, 643-654.   DOI:10.1080/00207721.2020.1737265
  208. M. Mazandarani and M. Najariyan: A note on class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Systems 265 (2015), 121-126.   DOI:10.1016/j.fss.2014.05.018
  209. M. Mazandarani, N. Pariz and A. V. Kamyad: Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Systems 26 (2018), 1, 310-323.   DOI:10.1109/TFUZZ.2017.2659731
  210. N. Mikaeilvand and S. Khakrangin: Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl. 21 (2012), 1, S307-S312.   DOI:10.1007/s00521-012-0901-x
  211. C. Min, N. J. Huang and L. H. Zhang: Existence of local and global solutions of fuzzy delay differential inclusions. Adv. Differ. Equations 2014 (2014), Article number: 108.   DOI:10.1186/1687-1847-2014-108
  212. F. Mirzaee and M. K. Yari: A novel computing three-dimensional differential transform method for solving fuzzy partial differential equations. Ain Shams Engrg. J. 7 (2016), 2, 695-708.   DOI:10.1016/j.asej.2015.05.013
  213. M. T. Mizukoshi, L. C. Barros, Y. Chalco-Cano, H. Román-Flores and R. C. Bassanezi: Fuzzy differential equations and the extension principle. Inform. Sci. 177 (2007), 3627-3635.   DOI:10.1016/j.ins.2007.02.039
  214. M. T. Mizukoshi, L. C. Barros and R. C. Bassanezi: Stability of fuzzy dynamic systems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 17 (2009), 01, 69-83.   DOI:10.1142/S0218488509005747
  215. D. Mohapatra and S. Chakraverty: Type-2 fuzzy initial value problems under granular differentiability. Math. Computers Simul. 229 (2025), 435-447.   CrossRef
  216. M. M. Moghadam and I. Jalal: Finite volume methods for fuzzy parabolic equations. J. Math. Computer Sci. 2 (2011), 3, 546-558.   DOI:10.22436/jmcs.02.03.17
  217. I. V. Molchanyuk and A. V. Plotnikov: Necessary and sufficient conditions of optimality in the problems of control with fuzzy parameters. Ukrainian Math. J. 61 (2009), 3, 457-466.   DOI:10.1007/s11253-009-0214-0
  218. S. P. Mondal, N. A. Khan, O. A. Razzaq, S. Tudu and T. K. Roy: Adaptive strategies for system of fuzzy differential equation: Application of arms race model. J. Math. Computer Sci. 18 (2018), 192-205.   DOI:10.22436/jmcs.018.02.07
  219. S. P. Mondal and T. K. Roy: Solution of second order linear fuzzy ordinary differential equation by Lagrange multiplier method with application in mechanics. Opsearch 54 (2017), 766-798.   DOI:10.1007/s12597-017-0305-x
  220. M. Mosleh: Fuzzy neural network for solving a system of fuzzy differential equations. Appl. Soft Comput. 13 (2013), 8, 3597-3607.   DOI:10.1016/j.asoc.2013.04.013
  221. M. Mosleh and M. Otadi: Simulation and evaluation of fuzzy differential equations by fuzzy neural network. Appl. Soft Comput. 12 (2012), 9, 2817-2827.   DOI:10.1016/j.apm.2014.11.035
  222. M. Mosleh and M. Otadi: Minimal solution of fuzzy linear system of differential equations. Neural Comput. Appl. 21 (2012), Suppl. 1, S329-S336.   DOI:10.1007/s00521-012-0913-6
  223. M. Mosleh and M. Otadi: Approximate solution of fuzzy differential equations under generalized differentiability. Appl. Math. Modell. 39 (2015), 10-11, 3003-3015.   DOI:10.1016/j.apm.2014.11.035
  224. M. S. N. Murty and G. S. Kumar: Three point boundary value problems for third order fuzzy differential equations. J. Chungcheong Math. Soc. 19 (2006), 1, 101-110.   DOI:10.14403/jcms.2006.19.1.101
  225. F. Nagi, S. K. Ahmed, A. T. Zularnain and J. Nagi: Fuzzy time-optimal controller (FTOC) for second order nonlinear systems. ISA Trans. 50 (2011), 364-375.   DOI:10.1016/j.isatra.2011.01.014
  226. E. Nasibov, C. Atilgan, M. E. Berberler and R. Nasiboglu: Fuzzy joint points based clustering algorithms for large data sets. Fuzzy Sets Systems 270 (2015), 111-126.   https://doi.org/10.1016/j.fss.2014.08.004
  227. R. Nasiboglu and E. Nasibov: FyzzyGBR - A gradient boosting regression software with fuzzy target values. Software Impacts 14 (2022), 100430.   DOI:10.1016/j.simpa.2022.100430
  228. J. J. Nieto: The Cauchy problem for continuous fuzzy differential equations. Fuzzy Sets Systems 102 (1997), 2, 259-262.   DOI:10.1016/S0165-0114(97)00094-8
  229. J. J. Nieto, A. Khastan and K. Ivaz: Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Analysis: Hybrid Systems 3 (2009), 4, 700-707.   DOI:10.1016/j.nahs.2009.06.013
  230. J. J. Nieto and R. Rodríguez-López: Bounded solutions for fuzzy differential and integral equations. Chaos Solitons Fractals 27 (2006), 5, 1376-1386.   DOI:10.1016/j.chaos.2005.05.012
  231. J. J. Nieto and R. Rodríguez-López: Some results on boundary value problems for fuzzy differential equations with functional dependence. Fuzzy Sets Systems 230 (2013), 92-118.   DOI:10.1016/j.fss.2013.05.010
  232. J. J. Nieto, R. Rodríguez-López and D. Franko: Linear first-order fuzzy differential equations. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 14 (2006), 06, 687-709.   DOI:10.1142/S0218488506004278
  233. J. J. Nieto, R. Rodríguez-López and M. Villanueva-Pesqueira: Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optim. Decision Making 10 (2011), 323-339.   DOI:10.1007/s10700-011-9108-3
  234. M. Oberguggenberger and S. Pittschmann: Differential equations with fuzzy parameters. Math. Computer Modell. Dynamical Systems: Methods Tools Appl. Engrg. Related Sci. 5 (1999), 3, 181-202.   DOI:10.1076/mcmd.5.3.181.3683
  235. A. A. Omar and Y. A. Hasan: Numerical solution of fuzzy differential equations and the dependency problem. Appl. Math. Comput. 219 (2012), 3, 1263-1272.   DOI:10.1016/j.amc.2012.07.034
  236. D. O'Regan, V. Lakshmikantham and J. J. Nieto: Initial and boundary value problems for fuzzy differential equations. Nonlinear Anal. 54 (2003), 405-415.   DOI:10.1016/S0362-546X(03)00097-X
  237. S. C. Palligkinis, G. Papageorgiou and I. T. Famelis: Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 1, 97-105.   DOI:10.1016/j.amc.2008.06.017
  238. J. Y. Park and H. K. Han: Fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 1, 69-77.   DOI:10.1016/S0165-0114(98)00150-X
  239. J. Y. Park and J. U. Jeong: On random fuzzy functional differential equations. Fuzzy Sets Systems 223 (2013), 89-99.   DOI:10.1016/j.fss.2013.01.013
  240. D. W. Pearson: A property of linear fuzzy differential equations. Appl. Math. Lett. 10 (1997), 3, 99-103.   DOI:10.1016/S0893-9659(97)00043-8
  241. F. S. Pedro, L. C. Barros and E. Esmi: Population growth model via interactive fuzzy differential equation. Inform. Sci. 481 (2019), 160-173.   DOI:10.1016/j.ins.2018.12.076
  242. W. Pedrycz: Why triangular membership functions? Fuzzy Sets Systems 64 (1994), 1, 21-30.   DOI:10.1016/0165-0114(94)90003-5
  243. I. Perfilieva, H. Meyer, B. Baets and D. Plšková: Cauchy problem with fuzzy initial condition and its approximate solution with the help of fuzzy transform. In: IEEE World Congress on Computational Intelligence (WCCI 2008), 6 p., 2008.   DOI:10.1109/FUZZY.2008.4630687.
  244. I. Perfilieva and V. Kreinovich: Fuzzy transforms of higher order approximate derivatives: A theorem. Fuzzy Sets Systems 180 (2011), 1, 55-68.   DOI:10.1016/j.fss.2011.05.005
  245. A. V. Plotnikov: Necessary optimality conditions for a nonlinear problem of control of trajectory bundles. Cybernetics Systems Analysis 36 (2000), 5, 730-733.   DOI:10.1023/A:1009432907531
  246. A. V. Plotnikov, T. A. Komleva and N. V. Skripnik: Existence of basic solutions of first order linear homogeneous set-valued differential equations. Matematychni Studii 61 (2024), 1, 61-78.   DOI:10.30970/ms.61.1.61-78
  247. A. V. Plotnikov and N. V. Skripnik: An existence and uniqueness theorem to the Cauchy problem for generalised set differential equations. Dynamics Continuous Discrete Impulsive Systems, Series A: Math. Anal. 20 (2013), 433-445.   DOI:10.3934/dcds.2013.20.433
  248. P. Prakash, G. Sudha Priya and J.-H. Kim: Third-order three-point fuzzy boundary value problems. Nonlinear Analysis: Hybrid Systems 3 (2009), 3, 323-333.   DOI:10.1016/j.nahs.2009.02.001
  249. M. L. Puri and D. A. Ralescu: Differentials of fuzzy functions. J. Math. Anal. Appl. 91 (1983), 552-558.   DOI:10.1016/0022-247X(83)90169-5
  250. M. Qayyum, A. Tahir, S. T. Saeed, S. Afzal, A. Akgül and M. K. Hassani: Dual solution of thin film flow of fuzzified MHD pseudo-plastic fluid: numerical investigation in uncertain environment. Appl. Math. Sci. Engrg. 32 (2024), 1, 2421486.   DOI:10.1080/27690911.2024.2421486
  251. D. Qiu, R. Dong, C. Lu and C. Mu: On the stability of solutions of fuzzy differential equations in the quotient space of fuzzy numbers. J. Intell. Fuzzy Systems 31 (2016), 1, 45-54.   DOI:10.3233/IFS-162115
  252. D. Qiu, W. Zhang and C. Lu: On fuzzy differential equations in the quotient space of fuzzy numbers. Fuzzy Sets Systems 295 (2016), 72-98.   DOI:10.1016/j.fss.2015.03.010
  253. D. Qiu, C. Zhang, W. Zhang and C. Mu: Basic theorems for fuzzy differential equations in the quotient space of fuzzy numbers. Advances Difference Equations (2014) 1-22.   DOI:10.1186/1687-1847-2014-303
  254. F. Rabiei, F. Ismail, A. Ahmadian and S. Salahshour: Numerical solution of second‐order fuzzy differential equation using improved Runge-Kutta Nystrom method. Math. Problems Engrg. 2013 (2013), 1, 803462.   DOI:10.1155/2013/803462
  255. F. Rabiei, F. Abd Hamid, M. M. Rashidi and F. Ismail: Numerical simulation of fuzzy differential equations using general linear method and B-series. Advances Mechanic. Engrg. 9 (2017), 9, 1687814017715419.   DOI:10.1177/1687814017715419
  256. N. A. A. Rahman and M. Z. Ahmad: Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations. Entropy 17 (2015), 7, 4582-4601.   DOI:10.3390/e17074582
  257. W. Ren, Z. Yang, X. Sun and M. Qi: Hyers-Ulam stability of Hermite fuzzy differential equations and fuzzy Mellin transform. J. Intell. Fuzzy Systems 35 (2018), 3, 3721-3731.   DOI:10.3233/JIFS-18523
  258. R. Rodríguez-López: On the existence of solutions to periodic boundary value problems for fuzzy linear differential equations. Fuzzy Sets Systems 219 (2013), 1-6.   DOI:10.1016/j.fss.2012.11.007
  259. R. Rodríguez-López: Comparison results for fuzzy differential equations. Inform. Sci. 178 (2008), 1756-1779.   DOI:10.1016/j.ins.2007.10.011
  260. R. Rodríguez-López: Monotone method for fuzzy differential equations. Fuzzy Sets Systems 159 (2008), 16, 2047-2076.   DOI:https://doi.org/10.1016/j.fss.2007.12.020
  261. M. R. Roussel: The use of delay differential equations in chemical kinetics. J. Physical Chemistry 100 (1996), 20, 8323-8330.   DOI:10.1021/jp9600672
  262. S. Salahshour and E. Haghi: Solving fuzzy heat equation by fuzzy Laplace transforms. Commun. Computer Inform. Sci. 81 (2010), 512-521.   DOI:10.1007/978-3-642-14058-7\_53
  263. N. Salamat, M. Mustahsan and M. M. Saad Missen: Switching point solution of second-order fuzzy differential equations using differential transformation method. Mathematics 7 (2019), 3, 231.   DOI:10.3390/math7030231
  264. S. A. B. Salgado, E. Esmi, D. E. Sanchez and L. C. de Barros: Solving interactive fuzzy initial value problem via fuzzy Laplace transform. Computat. Appl. Math. 40 (2021), 1-14.   DOI:10.1007/s40314-020-01404-3
  265. S. A. B. Salgado, L. C. de Barros, E. Esmi and D. Eduardo Sanchez: Solution of a fuzzy differential equation with interactivity via Laplace transform. J. Intell. Fuzzy Systems 37 (2019), 2, 2495-2501.   DOI:doi.org/10.3223/JIFS-182761
  266. D. E. Sanchez, L. C. Barros and E. Esmi: On interactive fuzzy boundary value problems. Fuzzy Sets Systems 358 (2019), 84-96.   DOI:10.1016/j.fss.2018.07.009
  267. D. E. Sanchez, V. F. Wasques, E. Esmi and L. C. de Barros: Solution to the Bessel differential equation with interactive fuzzy boundary conditions. Comput. Appl. Math. 41 (2022), 1-12.   DOI:10.1007/s40314-021-01695-0
  268. F. Santo Pedro, L. C. de Barros and E. Esmi: Population growth model via interactive fuzzy differential equation. Inform. Sci. 481 (2019), 160-173.   DOI:10.1016/j.ins.2018.12.076
  269. M. S. Sarvestani and M. Chehlabi: Solutions of periodic boundary value problems for first-order linear fuzzy differential equations under new conditions. Comput. Appl. Math. 43 (2024), 5, 299.   DOI:10.1007/s40314-024-02713-7
  270. M. Saqib, M. Akram, S. Bashir and T. Allahviranloo: A Runge-Kutta numerical method to approximate the solution of bipolar fuzzy initial value problems. Comput. Appl. Math. 40 (2021), 4, 151.   DOI:10.1007/s40314-021-01535-1
  271. S. Seikkala: On the fuzzy initial value problem. Fuzzy Sets Systems 24 (1987), 3, 319-330.   DOI:10.1016/0165-0114(87)90030-3
  272. D. Shang and X. Guo: Adams predictor-corrector systems for solving fuzzy differential equations. Math. Problems Engrg. 2013 (2013), 1, 312328.   DOI:10.1155/2013/312328
  273. A. K. Shaw, M. Rahaman, S. P. Mondal, B. Chatterjee and S. Alam: Solution of a mining equipment maintenance system model in imprecise environment. Int. J. Oper. Res. 51 (2024), 4, 562-598.   DOI:10.1504/IJOR.2024.143342
  274. Y. Shen: First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers. Fuzzy Sets Systems 429 (2022), 136-168.   DOI:10.1016/j.fss.2020.11.010
  275. Y. Shen: Solutions to the fuzzy heat equation and the fuzzy wave equation in the space of strongly linearly correlated fuzzy numbers. Inform. Sci. 718 (2025), 122423.   DOI:10.1016/j.ins.2025.122423
  276. Y. Shen, W. Chen and J. Wang: Fuzzy Laplace transform method for the Ulam stability of linear fuzzy differential equations of first order with constant coefficients. J. Intell. Fuzzy Systems 32(1) (2017) 671-680.   DOI:10.3233/JIFS-152567
  277. Y. Shen and F. Wang: A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability. J. Intell. Fuzzy Systems 30 (2016), 6, 3253-3260.   DOI:10.3233/IFS-152073
  278. Y. Shen and C. Yan: A new approach for fuzzy gyronorms on gyrogroups and its fuzzy topologies. Kybernetika 60 (2024), 1, 19-37.   DOI:10.14736/kyb-2024-1-0019
  279. Y. Shi and W. Yao: On generalizations of fuzzy metric spaces. Kybernetika 59 (2023), 6, 880-903.   DOI:10.14736/kyb-2023-6-0880
  280. N. Soma, G. S. Kumar, R. P. Agarwal, C. Wang and M. S. N. Murty: Existence and uniqueness of solutions for fuzzy boundary value problems under granular differentiability. Fuzzy Inform. Engrg. 15 (2023), 3, 291-312.   DOI:10.26599/FIE.2023.9270021
  281. S. Song and C. Wu: Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 1, 55-67.   DOI:10.1016/S0165-0114(97)00399-0
  282. S. Song, C. Wu and X. Xue: Existence and uniqueness of Cauchy problem for fuzzy differential equations under dissipative conditions. Computers Math. Appl. 51 (2006), 9-10, 1483-1492.   DOI:10.1016/j.camwa.2005.12.001
  283. L. Stefanini: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Systems 161 (2010), 11, 1564-1584.   DOI:10.1016/j.fss.2009.06.009
  284. M. Štěpnička and R. Valášek: Numerical solution of partial differential equations with help of fuzzy transform. In: Proc. 14th IEEE International Conference on Fuzzy Systems (FUZZ'05), 2005, pp. 1104-1109.   DOI:10.1109/FUZZY.2005.1452549
  285. X. Sun and Z. Yang: A Mellin transform method for solving fuzzy differential equations. Adv. Differ. Equations 2016 (2016), Article number: 296.   DOI:10.1186/s13662-016-1027-8
  286. S. Tapaswini and S. Chakraverty: A new approach to fuzzy initial value problem by improved Euler method. Fuzzy Inform. Engrg. 4 (2012), 3, 293-312.   DOI:10.1007/s12543-012-0117-x
  287. S. Tapaswini and S. Chakraverty: Numerical solution of fuzzy differential equations using orthogonal polynomials. Int. J. Comput. Sci. Math. 10 (2019), 1, 32-45.   DOI:10.1504/IJCSM.2019.097634
  288. P. V. Tri, N. V. Hoa and N. D. Phu: Sheaf fuzzy problems for functional differential equations. Adv. Differ. Equations 2014 (2014), Article number: 156.   DOI:10.1186/1687-1847-2014-156
  289. E. J. Villamizar-Roa, V. Angulo-Castillo and Y. Chalco-Cano: Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles. Fuzzy Sets Systems 265 (2015), 24-38.   DOI:10.1016/j.fss.2014.07.015
  290. D. Vorobiev and S. Seikkala: Towards the theory of fuzzy differential equations. Fuzzy Sets Systems 125 (2002), 231-237.   DOI:10.1016/S0165-0114(00)00131-7
  291. H. Vu: Random fuzzy differential equations with impulses. Complexity 2017 (2017), 1, 4056016.   DOI:10.1155/2017/4056016
  292. H. Vu and N. V. Hoa: On impulsive fuzzy functional differential equations. Iranian J. Fuzzy Systems 13 (2016), 4, 79-94.   DOI:10.22111/ijfs.2016.2597
  293. H. Vu, L. S. Dong and N. N. Phung: Application of contractive-like mapping principles to impulsive fuzzy functional differential equation. J. Intell. Fuzzy Systems 33 (2017), 2, 753-759.   DOI:10.3233/JIFS-161919
  294. H. Wang: Monotone iterative method for boundary value problems of fuzzy differential equations. J. Intell. Fuzzy Systems 30 (2016), 2, 831-843.   DOI:10.3233/IFS-151806
  295. H. Wang: Two-point boundary value problems for first-order nonlinear fuzzy differential equation. J. Intell. Fuzzy Systems 30 (2016), 6, 3335-3347.   DOI:10.3233/IFS-152081
  296. H. Wang: Existence of solutions to boundary value problem for second order fuzzy differential equations. J. Intell. Fuzzy Systems 36 (2019), 1, 829-838.   DOI:10.3233/JIFS-18721
  297. H. Wang: Boundary value problems for a class of first-order fuzzy delay differential equations. Mathematics 8 (2020), 5, 683.   DOI:10.3390/math8050683
  298. V. F. Wasques: A numerical approach to fuzzy partial differential equations with interactive fuzzy values: application to the heat equation. Comput. Appl. Math. 43 (2024), 6, Article 331.   DOI:10.1007/s40314-024-02852-x
  299. C. Wu, S. Song and E. S. Lee: Approximate solutions, existence, and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202 (1996), 2, 629-644.   DOI:10.1006/jmaa.1996.0338
  300. X. Xiaoping and F. Yongqiang: On the structure of solutions for fuzzy initial value problem. Fuzzy Sets Systems 157 (2006), 2, 212-229.   DOI:10.1016/j.fss.2005.06.009
  301. J. Xu, Z. Liao and Z. Hu: A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Systems 158 (2007), 21, 2339-2358.   DOI:10.1016/j.fss.2007.04.016
  302. J. Xu, Z. Liao and J. J. Nieto: A class of linear differential dynamical systems with fuzzy matrices. J. Math. Anal. Appl. 368 (2010), 54-68.   DOI:10.1016/j.jmaa.2009.12.053
  303. X. Xue and Y. Fu: Caratheodory solutions of fuzzy differential equations. Fuzzy Sets Systems 125 (2002), 2, 239-243.   DOI:10.1016/S0165-0114(00)00111-1
  304. H. Yang and Y. Chen: Lyapunov stability of fuzzy dynamical systems based on fuzzy-number-valued function granular differentiability. Commun. Nonlinear Sci. Numer. Simul. 133 (2024), 107984.   DOI:10.1016/j.cnsns.2024.107984
  305. H. Yang, F. Wang and Z. Gong: Solving the BVP to a class of second-order linear fuzzy differential equations under granular differentiability concept. J. Intell. Fuzzy Systems 42 (2022), 6, 5483-5499.   DOI:10.3233/JIFS-211958
  306. H. Yang, F. Wang and L. Wang: Solving the homogeneous BVP of second order linear FDEs with fuzzy parameters under granular differentiability concept. J. Intell. Fuzzy Systems 44 (2023), 4, 6327-6340.   DOI:10.3233/JIFS-223003
  307. H. Yang and Y. Wu: The BVP of a class of second order linear fuzzy differential equations is solved by Green function method under the concept of granular differentiability. Comput. Appl. Math. 43 (2024), 5, 293.   DOI:10.1007/s40314-024-02799-z
  308. L. A. Zadeh: Fuzzy sets. Inform. Control 8 (1965), 338-353.   CrossRef
  309. H. Zarei, A. V. Kamyad and A. A. Heydari: Fuzzy modeling and control of HIV infection. Comput. Math. Methods Medicine (2012), Article ID 893474.   DOI:10.1155/2012/893474
  310. D. Zhang, W. Feng, Y. Zhao and J. Qiu: Global existence of solutions for fuzzy second-order differential equations under generalized H-differentiability. Comput. Math. Appl. 60 (2010), 6, 1548-1556.   DOI:10.1016/j.camwa.2010.06.038
  311. H. Zhao, L. Y. Jia and G. X. Chen: Convex (L,M)-fuzzy remote neighborhood operators. Kybernetika 60 (2024), 2, 150-171.   DOI:10.14736/kyb-2024-2-0150
  312. Y. Zhao and Y. Zhu: Fuzzy optimal control of linear quadratic models. Comput. Math. Appl. 60 (2010), 67-73.   DOI:10.1016/j.camwa.2010.04.030
  313. Y. Zhu: Stability analysis of fuzzy linear differential equations. Fuzzy Optim. Decision Making 9 (2010), 169-186.   DOI:10.1007/s10700-010-9080-3