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A SURVEY AND COMPARATIVE ANALYSIS OF
DIFFERENT APPROACHES TO FUZZY DIFFERENTIAL
EQUATIONS MODELING DYNAMICS WITH UNCERTAIN
PARAMETERS OF DETERMINISTIC CHARACTER

Nizami A. Gasilov, Şahin Emrah Amrahov

Dynamics containing deterministic uncertainties can be modeled with fuzzy differential equa-
tions. Unlike classical differential equations, fuzzy differential equations lack a unified inter-
pretation and theoretical foundation, as researchers adopt different approaches to fuzziness,
solution concepts, and underlying mathematical structures. The main reason is whether the
fuzzy function derivative is used in the equation in question and, if it is used, what meaning it
carries. Researchers who do not involve a derivative of a fuzzy number-valued function either
use the extension principle, an alternative concept of fuzzy function, or transform the problem
into a differential inclusion. Various definitions have been used in studies involving the deriva-
tives of fuzzy number-valued functions. The main reason is that none of the known derivatives
can fully meet the requirements: either the fuzziness increases excessively, or it becomes impos-
sible to solve higher-order equations, or unnatural assumptions must be made. In this study,
we tried to classify almost all studies on fuzzy differential equations. We compared the re-
sults of studies conducted in relatively recent years, particularly in initial value and boundary
value problems, using examples. We discussed the possible direction of future research on fuzzy
differential equations.
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1. INTRODUCTION

Many new scientific studies on fuzzy sets, systems, and logic have been published in
various fields of science and engineering. It is impossible to list all of these studies, so
we give a few examples [40, 60, 61, 162, 174, 198, 226, 227, 250, 273]. The starting
point of all these studies is Zadeh’s article [308]. This article, published in 1965, was a
revolutionary study in science, but it took at least 10 more years to understand that this
was so. There was a serious objection to the work by mathematicians, and from their
point of view, their objections were justified; this paper was not a serious mathematical
work. Zadeh did not make such a claim anyway; he rather explained a new theory to
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model uncertainties. Probability theory experts objected to this: Was there a need for
a new theory when there was probability theory? The flow of life answered “yes” to
this question, and today, it is accepted by almost everyone that Zadeh’s fuzzy logic and
fuzzy sets theory have made an undeniable contribution to the development of artificial
intelligence. It is worth noting that the path to the acceptance of Zadeh’s theory was
not straightforward. Until about 1975, most journals avoided accepting research papers
on fuzzy theory. Interestingly, Kybernetika, which turns 60 in 2024, was one of the
first journals to start publishing research on the topic. The journal declared that it was
taking fuzzy theory research seriously by publishing a paper by Kramosil and Michálek
[179] in 1975. As in the early days, the journal continues to publish studies on fuzzy
logic, fuzzy sets, and systems [12, 49, 73, 124, 125, 127, 138, 278, 311].

After Zadeh’s theory was accepted, over the years, mathematicians have tried to
transfer the achievements of classical mathematics to fuzzy logic and fuzzy set theory,
sometimes as necessary and sometimes as unnecessary. This wasn’t always easy to do.
Before defining concepts such as limit, derivative, and integral, it was necessary to define
arithmetic operations here. Scientists doing research in the field of fuzzy logic and fuzzy
sets know well how many difficulties a simple subtraction operation creates. Of course,
we need to respect any scientific study that does not contain errors, just like Zadeh’s
article; it is difficult to predict which study will be linked where. History is full of
examples of this. Zadeh himself could not have known that the article he published
with great difficulty would make such an impact years later. However, we have difficulty
understanding the attempts to transfer subjects that are too theoretical in mathematics
and far removed from real life to fuzzy logic and fuzzy set theory. Differential equations,
on the other hand, are not disconnected from real life but are a tool that allows us to
model almost all kinds of motions.

The motion to be modeled may contain uncertainties. Stochastic differential equa-
tions [199, 205, 206], interval differential equations [104, 116, 118], and fuzzy differential
equations [145, 147] can be used depending on the type of problem being considered and
the uncertainty present. If the uncertainty includes randomness, the motion considered
can be modeled with a stochastic equation. On the contrary, if the uncertainty is de-
terministic, an interval or fuzzy differential equation model is used. If the possibilities
of all values that the variable containing uncertainty can take are equal, the interval
model is appropriate, and if they are different, the fuzzy differential equation model is
appropriate.

In this study, we examine the studies done so far on fuzzy differential equations
(FDEs), classify these studies, compare the proposed methods with each other, investi-
gate the weaknesses and strengths of different approaches, and discuss future research
directions on this subject. We can divide the studies published so far on fuzzy differen-
tial equations into two main groups:
1) Studies using only classical derivatives, and 2) Studies using a new derivative concept.

The studies in the first group can be divided into the following subgroups:

– studies using Zadeh’s extension principle

– studies using differential inclusion

– studies using a fuzzy bunch of real-valued functions.
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The studies in the second group can be divided into the following subgroups:

– studies using Hukuhara derivative

– studies using the strongly generalized derivative (Bede–Gal derivative) defined via
the Hukuhara difference

– studies using the Bede–Gal derivative defined via the generalized Hukuhara differ-
ence

– studies using interactive derivative

– studies using granular derivative.

In this study, we have examined more than 300 works on fuzzy differential equations.
These works cover almost all studies done on this subject so far. We can summarize the
results we observed in these studies as follows:

– In almost all of the studies, the coefficients of the differential equations being
considered are real numbers, and the fuzziness is in the initial or boundary values.
The main reason for this is that existing fuzzy number-valued derivatives are not
effective enough in solving differential equations with fuzzy coefficients.

– All the proposed methods are naturally based on solving real differential equations.
In some of the methods, the authors do this at the beginning stage of the solution,
and in others, at the final stage. However, it does not matter when this is done; if
the derivations are correct, the solution to the same problem will be the same in
both cases.

– Derivatives defined so far for fuzzy number-valued functions have their shortcom-
ings, and proposing a new derivative concept or a new method can only make
sense in two cases: with their help, either at least a class of problems that exist-
ing methods cannot solve becomes solvable, or some problems can be solved more
quickly.

2. PRELIMINARIES

This section gives preliminary information about fuzzy sets and fuzzy numbers used in
this study.

2.1. Basic concepts of fuzzy sets theory

In classical set theory, an element either belongs to a set or does not belong. This
belonging is usually expressed with the help of the characteristic function

χA(x) =

{
1, x ∈ A
0, otherwise.

In the theory of fuzzy sets, every element of the universal set U belongs to every fuzzy
set. This belonging has a membership degree specific to the considered fuzzy set. Thus,
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a fuzzy set Ã is determined by a pair of the universal set U and the membership
function µ : U → [0, 1]. We denote the membership function as µÃ to emphasize that

the fuzzy set Ã is under consideration. For each x ∈ U , the number µÃ(x) is called the

membership degree of x in Ã. The classical set supp(Ã) = {x ∈ U | µÃ(x) > 0}
determines the support of the fuzzy set Ã.

For a given α ∈ (0, 1], the classical set Aα = {x | µÃ(x) ≥ α} is called the α-cut of

the fuzzy set Ã. (The α-cut is also denoted as [Ã]α.) For α = 0, the 0-cut is defined as

the closure of the support of Ã, that is, A0 = closure(supp(Ã)).
In the special case, if the universal set U is the set of real numbers, that is, if U = R,

then the fuzzy sets that satisfy certain conditions are called fuzzy numbers.

Definition 2.1. Let Ã be a fuzzy set on the set of real numbers U = R. If Ã satisfies
the following conditions, then this fuzzy set is called a fuzzy number:

– Ã is a fuzzy normal set, i. e., µÃ(x0) = 1 for some x0 ∈ R.

– Ã is a fuzzy convex set, i. e., µÃ(tx+(1−t)y) ≥ min{µÃ(x), µÃ(y)} for all t ∈ [0, 1]
and for all x, y ∈ R.

– µÃ(x) is a upper semicontinuous function on R, i. e., if x0 ∈ R, then ∀ε > 0, ∃δ > 0
such that for all x ∈ (x0 − δ, x0 + δ) the inequality µÃ(x) − µÃ(x0) < ε satisfies.

– The set closure(supp(Ã)) is a closed, bounded interval.

For example, the following membership function represents a fuzzy number:

µÃ(x) =


(x− 1)3, if 1 ≤ x ≤ 2

(3 − x)2, if 2 < x < 3

0, otherwise.

The α-cuts of the above fuzzy number Ã are Aα = [Aα, Aα] = [1 + 3
√
α, 3 −

√
α], for

all α ∈ [0, 1].
The set of fuzzy numbers will be denoted as FR. We note that R ⊂ FR. We also note

that for a given fuzzy number Ã, the α-cuts are closed, bounded intervals in R.
Let a, c and b be real numbers such that a ≤ c ≤ b. A fuzzy number Ã with

membership function

µÃ(x) =


x−a
c−a , a < x < c

1, x = c
b−x
b−c , c < x < b

0, otherwise

is called a triangular fuzzy number and is denoted as Ã = (a, c, b).

We can express a triangular fuzzy number Ã as Ã = acr+Ãun (crisp part + uncertain

part). Here acr = c and Ãun = (a− c, 0, b− c).

For a triangular fuzzy number Ã = (a, c, b) the α-cuts are intervals Aα = [Aα, Aα],

where Aα = a + α(c− a) and Aα = b + α(c− b).
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In this paper, we use the usual arithmetic operations (i. e., Minkowski operations)
of addition, subtraction, multiplication, and division on fuzzy numbers. It is worth
emphasizing that these operations can also be considered as Zadeh’s extensions of the
corresponding operations on real numbers.

2.2. Triangular fuzzy function

Fuzzy functions can be defined in two different ways: as fuzzy number-valued functions
or as fuzzy sets (bunches) of real-valued functions. In the second case, every real-valued
function belongs to the fuzzy set with a certain membership degree. When we refer to
the value F̃ (t) of such a fuzzy function F̃ at time t, we mean a fuzzy set (i. e., a fuzzy
number) consisting of values of the real functions at t. If the same value takes place for
different functions, the higher membership degree of the functions is assigned to be the
membership degree of the value. More formally, we put

µF̃ (t)(x) = α, if ∃y(·) : (µF̃ (y) = α ∧ y(t) = x) and ∀z(·) : (µF̃ (z) > α → z(t) ̸= x).

Besides, we use the concept of triangular fuzzy functions (a practical case of the fuzzy
bunch) introduced by Gasilov et al. [117].

Definition 2.2. (Triangular fuzzy function) Let fa(·), fc(·), fb(·) be continuous func-

tions on an interval I. The fuzzy set F̃ , determined by the membership function

µF̃ (y(·)) =


α, y = fa + α(fc − fa) and 0 < α ≤ 1

α, y = fb + α(fc − fb) and 0 < α ≤ 1

0, otherwise

is called a triangular fuzzy function and it is denoted as F̃ = ⟨fa, fc, fb⟩.

According to this definition, a triangular fuzzy function is a fuzzy set (or, fuzzy
bunch) of real functions. Among them only two functions have the membership degree
α: the functions y1 = fa +α(fc − fa) and y2 = fb +α(fc − fb) (if fa, fc, fb are pairwise
distinct functions).

For each time t ∈ I, the value of a triangular fuzzy function is a triangular fuzzy
number and can be expressed by the following formula:

F̃ (t) = (min {fa(t), fc(t), fb(t)} , fc(t), max {fa(t), fc(t), fb(t)}) .

2.3. Zadeh’s extension principle

We first define Zadeh’s extension principle and then briefly explain how it can be applied
to solve fuzzy differential equations.

Let FX denote the set of all fuzzy subsets of X.

Definition 2.3. (Zadeh’s extension principle [266, 308]) Zadeh’s extension of a given

function f : X → Z is the function F̃ : FX → FZ defined for each fuzzy set Ã ∈ FX as
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the fuzzy value F̃ (Ã) ∈ FZ , whose membership function is determined as

µF̃ (Ã)(z) =

{
sup

x∈f−1(z)

µÃ(x), if f−1(z) ̸= ∅

0, if f−1(z) = ∅

for all z, where f−1(z) = {x ∈ X | f(x) = z}.

For Zadeh’s extension of a continuous function f , the following equality holds:[
F̃ (Ã)

]
α

= f (Aα) , (1)

where f (Aα) = {f(x) | x ∈ Aα} (the image of Aα under f).
Zadeh’s extension principle can be effectively implemented for solving fuzzy differ-

ential equations as follows. Let a differential equation with fuzzy inputs be given. For
clarity, let them be fuzzy numbers Ã and B̃. If we substitute Ã and B̃ with real pa-
rameters a and b, respectively, we have a real differential equation with two parameters.
Assume that we can solve this differential equation analytically, and the solution is
y = y(t, a, b). Then, the solution of the given fuzzy differential equation by Zadeh’s
extension principle is determined as[

Ỹ
(
t, Ã, B̃

)]
α

= y (t, Aα, Bα) , (2)

where y (t, Aα, Bα) = {y(t, a, b) | a ∈ Aα, b ∈ Bα}.

2.4. Different fuzzy derivative concepts

Chang and Zadeh [66] provide the first formal definition of the derivative for fuzzy
functions. In their approach, a fuzzy function is treated as a family of real-valued
functions, each associated with a specific membership degree. They then define how
the derivatives of these real-valued functions contribute to constructing a new fuzzy set.
Importantly, their definition does not represent the derivative of a fuzzy number-valued
function in the conventional sense, but rather focuses on the behavior of its level sets.

Dubois and Prade give the next derivative definition [87]. Their derivative is made
over α-cuts, so in this definition, the derivative of a real-valued function was used.

The first derivative definition for fuzzy number-valued functions is proposed by Puri
and Ralescu in 1983 [249]. It is an adaptation of the set-valued function derivative
definition proposed by Hukuhara [134]. The definition suggested by Puri and Ralescu is
as follows:

Definition 2.4. (Hukuhara derivative) Let F̃ : I → FR be a fuzzy number-valued

function. We say that F̃ has a Hukuhara derivative F̃ ′(t) ∈ FR at t ∈ I, if for all h > 0
that are sufficiently close to 0, the H-differences and the limits exist in the following
expression:

lim
h→0+

F̃ (t + h) ⊖ F̃ (t)

h
= lim

h→0+

F̃ (t) ⊖ F̃ (t− h)

h
= F̃ ′(t).
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In the above definition, ⊖ denotes the H-difference (i. e., Hukuhara difference).
Seikkala [271] represents a fuzzy function by its α-cuts and defines its derivative as

follows:

Definition 2.5. (Seikkala derivative) Let a fuzzy function F̃ : I → FR be given via

its α-cuts: Fα(t) = (Fα(t), Fα(t)). Then, F ′
α(t) = (Fα

′(t), Fα
′
(t)), provided that

Fα
′(t) ≤ Fα

′
(t), and Fα

′(t) ≤ Fβ
′(t) and Fβ

′
(t) ≤ Fα

′
(t) whenever β ≥ α.

Puri and Ralescu’s definition of the derivative and Seikkala’s definition are equivalent.
In other words, if a function is differentiable in the sense of Definition 2.4, it is also
differentiable in the sense of Definition 2.5 and vice versa. One can find the proof of this
in [62]. In other words, the Seikkala derivative is nothing but the Hukuhara derivative,
and all the studies done under the name of the Seikkala derivative are repetitions of the
previous studies done with the Hukuhara derivative.

The support of a Hukuhara differentiable fuzzy function increases over time, so this
derivative is not suitable for modeling many uncertain dynamics. Moreover, even some
linear functions, namely, linear functions with decreasing uncertainty, do not have deriva-
tives in the Hukuhara sense. To overcome these shortcomings, Bede and Gal propose
the strongly generalized Hukuhara derivative [45]. After this proposal, the theory of
fuzzy differential equations gained momentum. Despite all the disadvantages that we
will explain below, this derivative definition has marked at least 10 years of the theory
of fuzzy differential equations. We believe that it should bear the name of Bede and
Gal, and throughout this article, we will refer to it as the Bede–Gal derivative.

Definition 2.6. (Bede–Gal derivative) Let F̃ : I → FR be a fuzzy number-valued

function. We say that F̃ has a Bede–Gal derivative F̃ ′(t) ∈ FR at t ∈ I, if for all h > 0
that are sufficiently close to 0, the H-differences and the limits exist in at least one of
the following items:

(i) lim
h→0+

F̃ (t + h) ⊖ F̃ (t)

h
= lim

h→0+

F̃ (t) ⊖ F̃ (t− h)

h
= F̃ ′(t)

or

(ii) lim
h→0+

F̃ (t) ⊖ F̃ (t + h)

−h
= lim

h→0+

F̃ (t− h) ⊖ F̃ (t)

−h
= F̃ ′(t),

or

(iii) lim
h→0+

F̃ (t + h) ⊖ F̃ (t)

h
= lim

h→0+

F̃ (t− h) ⊖ F̃ (t)

−h
= F̃ ′(t),

or

(iv) lim
h→0+

F̃ (t) ⊖ F̃ (t + h)

−h
= lim

h→0+

F̃ (t) ⊖ F̃ (t− h)

h
= F̃ ′(t).

If, for example, item (i) takes place, we say that F̃ is (i)-differentiable (or 1-differentiable).

Also, if, for example, F̃ is (ii)-differentiable and F̃ ′ is (i)-differentiable, F̃ is called (2, 1)-
differentiable.

The only assumption in the Bede–Gal derivative is the existence of the H-difference,
but it is known that this condition is not satisfied for many functions. Therefore, after
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introducing the generalized H-difference by Stefanini [283], the Bede–Gal derivative is
used with this difference as well [48]. This expands the class of differentiable fuzzy
number-valued functions.

Chalco-Cano et al. [65] adapt the concept of π-derivative, proposed by Bank and Ja-
cobs [37] for set-valued functions, to fuzzy number-valued functions and show that this
derivative has the same meaning as the Hukuhara derivative. The authors examine the
relationship between the Bede–Gal derivative and the π-derivative. The main disadvan-
tage of the Bede–Gal derivative is the difficulty in computing higher-order derivatives,
which makes it almost impossible to use for higher-order equations. Therefore, some
studies have tried to overcome this difficulty. Perfilieva and Kreinovich [244] propose
using a fuzzy transform to compute higher-order derivatives.

Similar to Epuganti and Tenali [91] investigated the relationship between Hukuhara,
Bede–Gal, and Plotnikov–Skripnik derivatives for set-valued functions, the relationship
between the different derivatives for fuzzy number-valued functions can also be investi-
gated in a special study.

We will discuss the relatively recently proposed concepts of interactive and granular
derivatives in Sections 5 and 6, where we make comparisons regarding these concepts.

3. SURVEY OF THE STUDIES

The behavior of a dynamical system is described mainly by a differential equation. In a
real-world problem, some parameters in the equation are determined from measurements
(or observations) and may contain uncertainties. Often, these parameters are adequately
modeled using fuzzy set theory [308]. This gives rise to fuzzy differential equations. The
theory of fuzzy differential equations has not progressed as smoothly as the classical
theory. In addition to the many difficulties encountered, articles containing minor or
major errors have also been published. Moreover, these studies have been published in
serious journals specializing in fuzzy sets and systems, and even the researchers who
laid the foundations of the theory and whom we respect very much have made errors.
Most of the mistakes made were due to the theory not being fully established and the
rules of classical mathematics not always being valid here. Fortunately, most serious
errors were detected either by the researchers themselves or by other researchers after
a while, and today, a certain level has been reached. In this study, we aim to review
the chronological development of the theory. We also express some reservations about
the latest derivative concepts. We plan to share our more serious thoughts about these
concepts in another study with our readers.

As in the classical case, initial and boundary value problems are studied for differential
equations or systems of equations that contain uncertainty. Apart from this, methods for
finding an approximate solution in cases where an analytical solution cannot be obtained
and problems involving delays are also among the research topics. In this study, we focus
on the methods proposed to solve initial and boundary value problems rather than any
problem for differential equations containing uncertainty. However, this section reminds
the readers of almost all the studies on fuzzy differential equations. In the next sections,
we will discuss the methods proposed by various researchers.

In some studies, although the authors solve fuzzy differential equations, they assume
that each derivative in the equations is a classical derivative. However, most researchers
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consider each derivative to be a derivative of a fuzzy-valued function, in some sense.

As in real calculus, the path to fuzzy calculus begins with the concepts of differentia-
bility and integrability. Kaleva [154] deals with set-valued mappings of a real variable,
where the mapping values are fuzzy numbers. He studies the differentiability and inte-
grability properties of such functions and gives an existence and uniqueness theorem for
the solutions of fuzzy differential equations. In another work, Kaleva [155] tries to find
a class of fuzzy differential equations for which Peano’s theorem is valid. One year after
this study, Kloeden [176] provides some different results for the same problem. Ding
et al. [84] study the existence of solutions of fuzzy differential equations with param-
eters by the topological degree method. Friedman et al. [102] question the situations
in which Peano’s theorem applies. Kaleva [156] answers and dispels doubts raised by
Friedman et al. [102] regarding Peano’s theorem. Hüllermeier proposes a method based
on transforming a fuzzy differential equation into crisp differential inclusions [135]. Lak-
shmikantham and Leela [182] publish a study on the stability theory of fuzzy differential
equations. Ma et al. [196] adapt the Euler method to find an approximate solution
to a fuzzy differential equation. Diamond [82] investigates stability and periodicity in
fuzzy differential equations. Vorobiev and Seikkala [290] make a comparative analysis
of studies that do not use the fuzzy derivative concept. Xue and Fu [303] prove an
existence theorem when the right-hand side of the fuzzy differential equation satisfies
the Caratheodory condition. Diamond [83] develops a fuzzy version of the classical vari-
ation of constants method. Lakshmikantham and Nieto [184] introduce the concept of
differential equations in a metric space. Agarwal et al. [2] present the existence results
for fuzzy differential equations by the stacking theorem. Bhaskar et al. [51], by giving
examples, explain that the theory of fuzzy differential equations is important and needs
to be developed. Buckley and Feuring [55] propose first to find the solution of the asso-
ciated crisp differential equation and then fuzzify it. Babolian et al. [35] suggest finding
an approximate solution of the associated crisp differential equation by the Adomian
method and then fuzzifying this approximate solution. Bede and Gal [44] investigate
almost periodic functions and apply them to fuzzy differential equations. Abbasbandy et
al. [1] propose a numerical method to find an approximate solution of fuzzy differential
inclusion.

Lakshmikantham [181] is the first to realize that starting to study set differential
equations in a metric space would be important for investigating fuzzy differential equa-
tions and would also provide various advantages. There were studies on set differential
equations before Lakshmikantham realized this (See, for example, [53]). Amrahov et al.
[31] investigate the connection between old studies on the subject and fuzzy differential
equations about 10 years after Lakshmikantham. Important studies in this direction are
being done by Komleva et al. [178], Malinowski [202], Plotnikov et al. [246], Plotnikov
and Skripnik [247]. An important subsequent contribution to the theory of fuzzy dif-
ferential equations, developed independently from the aforementioned line of research,
is made by Kaleva [157], who introduces a novel approach based on the extension of
the classical differential equation framework to fuzzy set-valued functions. In this study,
Kaleva includes the forcing term in the equation. Nieto and Rodŕıguez-López [230] find
sufficient conditions for the boundness of every solution of first-order fuzzy differential
equations. Allahviranloo et al. [19] propose a predictor-corrector method for the nu-
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merical solution of fuzzy differential equations. However, Bede questions the examples
solved in this study and presents new examples [43]. Allahviranloo et al. [15] improve
their method and select examples more accurately. Rodŕıguez-López [259] provides a
comparative analysis of the results of the studies on fuzzy differential equations un-
der the Hukuhara derivative. Rodŕıguez-López [260] develops the monotone iterative
technique to approximate the extremal solutions for the fuzzy initial value problem.
Chalco-Cano and Román-Flores [62] show that fuzzy differential equations have differ-
ent solutions when viewed in terms of the Bede–Gal derivative than in the case of the
Hukuhara derivative. In their next work [63], the authors compare the solutions obtained
by different derivative concepts.

Later, the study of FDEs was carried out mainly in five directions:
1) Analytical and numerical methods to solve FDEs; 2) Application of various transfor-
mations; 3) Introducing new concepts of solutions; 4) Existence-uniqueness and stability
issues for uncertain dynamic systems; 5) New types of FDEs.

The main studies in the first direction can be listed chronologically as follows. Nieto et
al. [229] show that any suitable numerical method for ordinary differential equations can
solve numerically fuzzy differential equations under Bede–Gal differentiability. Palligki-
nis et al. [237] adapt the Runge–Kutta method to find approximate solutions to fuzzy
differential equations. Khastan and Ivaz [164] solve fuzzy differential equations numer-
ically by the Nystrom method. Effati and Pakdaman [88] introduce an artificial neural
network approach for solving fuzzy differential equations. Khastan et al. [167] develop
a variation of the constants formula for first-order fuzzy differential equations under the
Bede-.Gal derivative. Allahviranloo et al. [17] propose a novel operator method for
solving fuzzy linear differential equations under the Bede–Gal derivative. Mosleh and
Otadi [221] simulate fuzzy differential equations with fuzzy neural networks. Ghazan-
fari and Shakerami [121] apply a numerical algorithm for solving fuzzy first-order initial
value problems based on extended Runge–Kutta-like formulae of order 4. Dizicheh et
al. [85] note that the example given in [121] does not reflect what is described in the
study itself. Shang and Guo [272] introduce Adams predictor-corrector systems for
solving fuzzy differential equations. Chalco-Cano and Román-Flores [64] give some re-
marks on numerical algorithms for solving fuzzy differential equations via differential
inclusions. Kloeden and Lorenz [177] show that removing the convexity condition in
the differential inclusion approach can give a more general reachable set. Rabiei et al.
[254] develop the Fuzzy Improved Runge–Kutta–Nystrom (FIRKN) method for solving
second-order fuzzy differential equations. Allahviranloo et al. [16] propose solving non-
linear fuzzy differential equations using the fuzzy variational iteration method. Darabi
et al. [81] apply the Euler method to solve fully fuzzy differential equations under the
Bede–Gal differentiability. Jameela et al. [149] present a numerical approach based on
the 5th-order Runge–Kutta method to solve fuzzy differential equations. Garg [103]
proposes a numerical method using Runge–Kutta and Biogeography-based optimization
for solving fuzzy differential equations. Khastan and Rodŕıguez-López [171] examine
different formulations of first-order linear fuzzy differential equations under Bede–Gal
differentiability. They provide sufficient conditions for the existence and obtain a gen-
eral expression for the solutions. Hosseini et al. [133] solve linear and nonlinear fuzzy
differential equations by the variational iteration method. They obtain a sequence of
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functions that converge to the exact solution. Abu Arqub et al. [28] propose a method
based on the reproducing kernel theory to solve fuzzy differential equations under Bede–
Gal differentiability. Mondal and Roy [219] provide a solution procedure using the La-
grange multiplier method and extension principle for the second-order fuzzy differential
equations. Ashraf et al. [33] solve fuzzy differential equations with the average exten-
sion principle. Dai et al. [80] propose a mathematical model for universal oscillators
described by fuzzy differential equations. Cabral and Barros [59] examine differential
equations with interactive fuzzy parameters via t-norms. Khastan and Rodŕıguez-López
[173] study first-order linear fuzzy differential equations under differential inclusions and
the Bede–Gal differentiability approaches. They reveal some relationships between the
solutions obtained using these approaches. Harir et al. [130] present a new solution to
the Susceptible-Infected-Recovered (SIR) epidemic model with fuzzy initial value. Shen
[274] considers first-order linear fuzzy differential equations where the differentiability
of fuzzy functions is defined under the assumption of linear correlation between fuzzy
numbers. Many other studies propose solving fuzzy differential equations using various
numerical methods [5, 6, 75, 101, 137, 141, 150, 158, 161, 191, 235, 255, 270, 287].

In the second direction, where the authors use different transformations, the follow-
ing studies attract attention. Allahviranloo et al. [26] extend the differential trans-
formation method to solve fuzzy differential equations under the Bede–Gal derivative.
Allahviranloo and Ahmady [18] propose a fuzzy Laplace transform under the Bede–Gal
differentiability concept. Jafari et al. [140] apply a variational iteration method to solve
higher-order fuzzy differential equations. Rahman and Ahmad [256] study the fuzzy
Simudu transform and apply it to first-order fuzzy differential equations. ElJaoui et al.
[89] extend the fuzzy Laplace transform to solve second-order fuzzy differential equa-
tions. By using fuzzy Mellin transform, Sun and Yang [285] solve some fuzzy differential
equations under the Bede–Gal differentiability. Jafari and Razvarz [139] approximate
fuzzy differential equations with fuzzy Sumudu transform. Jameel et al. [148] develop
the differential transformation method to find semi-analytical solutions for high-order
fuzzy differential equations. Salamat et al. [263] find the switching points for the solu-
tions of second-order fuzzy differential equations by a differential transformation method.
Salgado et al. [265] model a type of harmonic oscillator with fuzzy differential equations
and solve them via the Laplace transform.

The work of Khastan et al. [163] can be considered as one of the first studies belonging
to the third direction. In this study, the authors introduce (1, 1), (1, 2, (2, 1) and (2, 2)-
solutions to fuzzy differential equations. Qiu et al. [253] examine fuzzy differential
equations in the quotient space of fuzzy numbers. Khastan and Rodŕıguez-López [172]
find periodic solutions to first-order linear fuzzy differential equations via differential
inclusions.

In the fourth direction, related to the issues of existence-uniqueness and stability,
the following works stand out. Mizukoshi et al. [214] investigate the stability of fuzzy
dynamic systems. Zhu [313] provides a stability analysis of the solutions of fuzzy differ-
ential equations. Mazandarani and Najariyan [208] note that the method of Xu et al.
[301] can produce unstable solutions to stable systems. Shen and Wang [277] investigate
the Ulam stability of fuzzy differential equations under Bede–Gal differentiability. Qiu
et al. [251] examine the stability of the solutions in the Lyapunov sense. There are
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many other works [78, 79, 131, 146, 153, 189, 190, 207, 257, 276, 304] on stability, but
we do not focus on this topic in this study. Chehlabi [67] shows the existence of a class
of first-order fuzzy differential equations with discontinuous coefficients that have con-
tinuous solutions. Malinowski and Michta [206] present the existence and uniqueness of
solutions to stochastic fuzzy differential equations driven by Brownian motion. Zhang et
al. [310] prove the existence theorem for second-order fuzzy differential equations with
initial conditions under the Bede–Gal derivative. Qui et al. [252] introduce a metric on
the quotient space of fuzzy numbers, study the differentiability and integrability prop-
erties of fuzzy functions, and give an existence and uniqueness theorem for a solution to
a fuzzy differential equation.

In the fifth direction, the authors propose new types of FDEs. Malinowski [199]
introduces the concept of random fuzzy differential equations. In his next work [200],
he proves the existence theorem for random fuzzy equations. Malinowski continues to
examine this issue under different conditions [201, 203, 204, 205]. Vu [291] is another
researcher who studies random fuzzy differential equations.

3.1. Studies on initial value problems

As with other problems, studies investigating the fuzzy initial value problem can be
divided into two groups. While in the first group, no specifically defined derivative for
fuzzy functions is involved, in the second group, a fuzzy derivative in some sense is used.
The studies given in Table 1 investigated the initial value problem for fuzzy differential
equations. In most of these studies, the coefficients are real numbers, and in all of them,
the initial value is given with a fuzzy number. For the studies that do not use a fuzzy
number-valued function’s derivative, in the table, the derivative is indicated as classical.
In the homogeneity column, it is stated whether the equation is homogeneous or not.

After Kandel and Byatt [159] first proposed the term “fuzzy differential equation”,
fuzzy versions of all the problems studied for classical differential equations naturally
began to be discussed. One of these problems, the initial value problem, was first studied
by Seikkala [271] and Kaleva [154, 155]. The initial value problem for fuzzy differential
equations may differ depending on the type of derivatives used in the equation and
whether the initial values and force function are fuzzy or not [7, 38, 45, 46, 55, 56, 57,
63, 114, 119, 123, 135, 167, 184, 243].

Park and Han [238] prove the existence and uniqueness of fuzzy solutions for the
initial value problem using the properties of Hasegawa’s functionals and successive ap-
proximation. Buckley and Feuring [55, 56] propose different methods to solve the fuzzy
initial value problem. In the first method, they use the left and right endpoints of the
given fuzzy number as the initial value and solve two real problems. Unfortunately, with
this method, there is no guarantee that the solutions obtained will be the left and right
endpoints of a fuzzy number for each t. The authors themselves demonstrate this sit-
uation with some examples. In the second method suggested by the authors, they find
the solution using Zadeh’s extension principle. According to this principle, they first
solve the corresponding crisp problem. Then, they replace the initial value in the found
solution of the crisp problem with the fuzzy one to transform the solution into a fuzzy
function. After this, the authors check whether the resulting fuzzy function satisfies the
differential equation and fuzzy initial conditions. Although this second method works
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Studies Coefficients Homogeneity Derivative
Kaleva [154, 155] real homogeneous classical
Seikkala [271] real homogeneous Hukuhara
Wu et al. [299] real homogeneous Hukuhara
Congxin and Shiji [74] real homogeneous Hukuhara
Nieto [228] real homogeneous Hukuhara
Buckley and Feuring [55, 56] real homogeneous classical
Hüllermeier [136] real homogeneous classical
Song and Wu [281] real homogeneous Hukuhara
Park and Han [238] real homogeneous Hukuhara
O’Regan et al. [236] real homogeneous Hukuhara
Georgiou et al. [119] real homogeneous Hukuhara
Bede and Gal [45] real homogeneous Bede–Gal
Song et al. [282] real homogeneous Hukuhara
Nieto et al. [232] real homogeneous classical
Xiaoping and Yongqiang [300] real homogeneous Hukuhara
Mizukoshi et al. [213] real homogeneous Hukuhara
Bede et al. [46] real homogeneous Bede–Gal
Lupulescu [193] real homogeneous Hukuhara
Allahviranloo et al. [20] real homogeneous classical
Perfilieva et al. [243] real homogeneous classical
Allahviranloo et al. [25] real homogeneous Bede–Gal
Allahviranloo et al. [21] real homogeneous classical
Khastan et al. [167] real non-homogeneous Bede–Gal
Li et al. [186] real homogeneous Hukuhara
Gasilov et al. [117] real non-homogeneous classical
Tapaswini and Chakraverty [286] real homogeneous Hukuhara
Akın et al. [7] fuzzy non-homogeneous classical
Gasilov et al. [114] real homogeneous classical
Cabral and Barros [58] real homogeneous interactive
Villamizar-Roa et al. [289] real homogeneous Bede–Gal
Khastan et al. [170] real homogeneous classical
de Barros and Santo Pedro [39] real homogeneous interactive
Esmi et al. [92] real homogeneous interactive
Salgado et al. [264] real homogeneous interactive
Alikhani and Mostafazadeh [14] fuzzy homogeneous Bede–Gal
Akram et al. [8] fuzzy homogeneous Hukuhara

Tab. 1. Studies investigating the fuzzy initial value problem, and the

properties of differential equations in them.

for linear fuzzy differential equations, it will not find solutions to nonlinear equations or
even systems of linear equations ([57]).

In the study [243], Perfilieva et al. develop an approach that resembles the Buck-
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ley–Feuring method in structure. However, unlike similar studies, their work uniquely
characterizes the solution’s degree of fuzziness as a function of the independent variable.
This is achieved by applying fuzzy transformations and inference rules based on the
 Lukasiewicz logic framework.

Lakshmikantham and Nieto [184] consider differential equations in metric spaces and
examine the initial value problem.

In some studies, the solution of the fuzzy initial value problem is sought as a fuzzy set
of real functions. Studies such as Gomes and Barros [123], Barros et al. [38], and Gasilov
et al. [114] can be given as examples. Gomes and Barros [123] and Barros et al. [38]
propose fuzzy calculus concepts similar to classical calculus and solve fuzzy differential
equations in terms of this calculus. They prove the existence of a solution to the first-
order fuzzy initial value problem under certain conditions. Gasilov et al. [114] propose
a method that can find the fuzzy solution by using linear transformations to solve the
fuzzy initial value problem. Although the authors explain their proposed method on
second-order equations for easy understanding, it can also be applied to higher-order
linear differential equations. It has also been shown that the fuzzy solution obtained in
the study coincides with the results of the extension principle.

Among the studies in the second group, Chehlabi and Allahviranloo [68] address the
initial value problem for first-order fully fuzzy linear differential equations under Bede–
Gal differentiability. The fuzzy solution can be found in the proposed method based on
the solutions of crisp ordinary differential equation systems. The authors also obtain
the necessary and sufficient conditions for the existence of the fuzzy solution.

Santo Pedro et al. [268] investigate the Fuzzy Initial Value Problem (FIVP), which
describes an autocorrelated evolution process. To do this, the authors use the concept of
correlated derivatives for fuzzy-valued functions. They establish a relationship between
the diameter of the solution and its derivative. Moreover, they observe how the derivative
affects the interactivity of the process by calculating a measure of the probabilistic
interactivity of the solution. Additionally, the authors analyze a population growth
model, namely the Logistic Model.

Esmi et al. [92] develop a generalization of Zadeh’s extension principle and solve
higher-order linear differential equations with initial conditions given by interactive fuzzy
numbers.

Akram et al. [8] consider the initial value problem for linear third-order fuzzy dif-
ferential equations. In methods that do not use derivatives of fuzzy-valued functions,
the order of the equation is unimportant. Generally, the methods are explained on
second-order equations but are valid for equations of any order. However, the order
of the equation is important because many situations arise when derivatives of fuzzy-
valued functions are used. In the study, the authors consider the third-order fuzzy
differential equation under the first and second Hukuhara derivatives. They also obtain
a relationship between the Laplace transform of the fuzzy-valued function and the third-
order derivative. Using the Laplace transform technique, they propose an algorithm to
determine the potential solution of the linear third-order fuzzy initial value problem.
Mohapatra and Chakraverty [215] investigate type-2 fuzzy initial value problems under
granular differentiability.
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3.2. Studies on boundary value problems

Fuzzy boundary value problems (FBVPs) arise naturally in various real-world and en-
gineering applications [52, 143, 309]. The problems have been extensively investigated
in many studies due to their practical significance and mathematical complexity. These
studies are shown in Table 2. In all of these studies, the coefficients of the equation
considered are real numbers, and the boundary values are fuzzy numbers. As in Table 1,
the homogeneity column shows whether the equation is homogeneous, and the derivative
column shows which derivative is used.

FBVPs are important to investigate because they can occur in many application
problems. Examining HIV infection, Zarei et al. [309] propose a fuzzy mathematical
model described by a linear fuzzy differential equation. The authors consider a fuzzy
optimal control problem that minimizes both viral load and drug costs. Based on the
proposed model, the authors derive an optimality condition in the form of a fuzzy
boundary value problem (FBVP). Jafelice et al. [143] propose a mathematical model for
the evolution of the positive HIV population and the emergence of AIDS. In the study,
the authors evaluate the transmission rate of HIV to AIDS as a fuzzy number. They
hypothesize that this transmission rate depends on infected individuals’ viral load and
CD4+ level. Salahshour and Haghi [262] naturally encounter FBVP when they consider
the fuzzy heat equation under Bede–Gal differentiability. In the work, the authors
transform the fuzzy heat equation into the corresponding fuzzy two-point boundary
value problem using the fuzzy Laplace transform.

FBVPs were first described by Lakshmikantham et al. [183]. They, as well as O’Regan
et al. [236] propose a solution method by assuming that a two-point boundary value
problem for a fuzzy differential equation is equivalent to a fuzzy integral equation. How-
ever, Bede [42] proves by a counterexample that a two-point boundary value problem
cannot always be transformed into a fuzzy integral equation. This circumstance shows
that FBVPs do not have a solution in most cases. Chen et al. [70, 71] investigate
the necessary and sufficient conditions for the two-point boundary value problem to be
equivalent to the fuzzy integral equation and prove the existence of the solution under
these conditions.

Murty and Kumar [224] propose existence and uniqueness conditions for a class of
boundary value problems for third-order nonlinear fuzzy differential equations. They
use Green’s functions and the contraction mapping principle in their work. Prakash
et al. [248] present a three-point boundary value problem for another type of bound-
ary condition, but still use Green’s functions. Khastan and Nieto [165] propose a new
solution method for the two-point boundary value problem for the second-order fuzzy
differential equation using Bede–Gal differentiability. Li et al. [185] study two-point
boundary value problems involving undamped and uncertain dynamical systems. They
define the concept of big solutions and prove that such solutions exist and are unique.
Nieto, Rodŕıguez-López and Villanueva-Pesqueira [233] prove the existence and unique-
ness of a solution for a first-order linear fuzzy differential equation with impulses sub-
ject to boundary value conditions. Liu [188] investigates the support of solutions for
two-point fuzzy boundary value problems. Fard et al. [95] present some sufficient con-
ditions for the existence and uniqueness of a solution using Hukuhara differentiability.
Rodŕıguez-López [258] provides sufficient conditions for the existence of solutions of pe-
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Studies Homogeneity Derivative
Lakshmikantham et al. [183] homogeneous Hukuhara
O’Regan et al. [236] homogeneous Hukuhara
Bede [42] homogeneous Hukuhara
Prakash et al. [248] homogeneous Hukuhara
Khastan and Nieto [165] homogeneous Bede–Gal
Nieto et al. [233] non-homogeneous Hukuhara
Li et al. [185] homogeneous Hukuhara
Gasilov et al. [108] homogeneous classical
Fatullayev and Köroglu [97] homogeneous Bede–Gal
Fatullayev and Köroglu [98] homogeneous Bede–Gal
Rodŕıguez-López [258] homogeneous Bede–Gal
Gasilov et al. [110] homogeneous classical
Gasilov et al. [111] non-homogeneous classical
Wang [294] non-homogeneous Bede–Gal
Wang [295] non-homogeneous Bede–Gal
Wang [296] non-homogeneous Bede–Gal
Citil [76] homogeneous Hukuhara
Gholami et al. [122] homogeneous Bede–Gal
Esmi et al. [92] homogeneous interactive
Farajzadeh et al. [94] homogeneous Hukuhara
Sánchez et al. [267] homogeneous interactive
Yang et al. [305] homogeneous granular
Soma et al. [280] homogeneous granular
Sarvestani and Chehlabi [269] homogeneous Bede–Gal
Yang et al. [306] homogeneous granular
Alavi [11] homogeneous Hukuhara
Yang and Wu [307] homogeneous granular

Tab. 2. Studies investigating the fuzzy boundary value problem, and

the properties of differential equations in them.

riodic boundary value problems for first-order linear fuzzy differential equations under
Bede–Gal differentiability and switching points.

Khastan et al. [168] investigate the existence of solutions for a class of FBVPs under
Bede–Gal differentiability. Nieto and Rodŕıguez-López [231] calculate the exact solution
for a class of FBVPs for first-order fuzzy linear differential equations with impulses under
Hukuhara differentiability. Ahmadi et al. [4] use the Laplace transform to solve a fuzzy
second-order differential equation involving the Bede–Gal derivative. Allahviranloo and
Chehlabi [22] consider fuzzy differential equations based on the concept of the length
function.

Numerous publications exist regarding numerical methods for FBVPs. Fatullayev
and Köroglu [97] propose an algorithm that uses the finite difference method to solve
FBVPs numerically. Bede and Rudas [47] propose a shooting algorithm for numerically
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solving fuzzy, two-point boundary value problems such as the fuzzy elastica problem.
Jamshidi and Avazpour [151] apply the shooting method to solve second-order, fuzzy
boundary value problems under Bede–Gal differentiability. Dahalan et al. [77] study
numerical solutions to FBVPs using the Gauss-Seidel and successive over-relaxation
iterative methods.

Khastan et al. [163, 169] and Khastan and Nieto [165] investigate fuzzy differential
equations under Bede–Gal differentiability. However, their examples show that the ob-
tained solutions are difficult to interpret because the four different problems generated
using the Bede–Gal first and second derivatives often do not reflect the nature of the
problem. Liu reduces these four problems to two when the right-hand side function is
monotonic [188]. In [3], Ahmad et al. study analytical and numerical solutions of fuzzy
differential equations based on the extension principle. By considering the dependency
problem in fuzzy interval arithmetic, the authors propose a new fuzzification of Euler’s
method. Recently, Akın et al. [7] present a new algorithm for solving fuzzy differential
equations with the Bede–Gal derivative. They first solve the corresponding classical
problem, and then construct the fuzzy solution by assuming that it is “close” to the
classical solution.

To find an exact solution to the periodic boundary value problem for a first-order
linear fuzzy differential equation with impulses, Nieto et al. use the crisp solution [233].

In another approach, the fuzzy problem is transformed into a crisp problem. There
are two ways to realize this approach. The first, suggested by Hüllermeier [135], uses
the concept of differential inclusion. In this way, by taking an α-cut of the initial value
and the solution, the given differential equation is converted to a differential inclusion,
and its solution is accepted as the α-cut of the fuzzy solution function. Li et al. use
this approach in [185]. In the paper, the concept of big solutions is introduced, and
some existence and uniqueness theorems are established. The second way is offered by
Gasilov et al. [108, 110]. In this way, the fuzzy problem is considered to be a set of crisp
problems. The authors investigate a differential equation with fuzzy boundary values.
They interpret the problem as a set of crisp problems. For linear equations, the authors
propose a method based on the properties of linear transformations. They show that if
the solution of the corresponding crisp problem exists and is unique, the fuzzy problem
also has a unique solution. Moreover, the authors prove that if the boundary values are
triangular fuzzy numbers, then the solution value is a triangular fuzzy number at each
time. The authors explain the proposed method with examples. They find analytical
expressions for the solution of a second-order linear differential equation with constant
coefficients. In an example, they demonstrate the advantages of the proposed method
compared to the method that uses the Bede–Gal derivative.

Khastan et al. demonstrate that a class of first-order linear differential equations
subject to periodic boundary conditions can be solved by alternating two types of Bede–
Gal derivatives at the switching points [168]. Rodŕıguez-López improves this result for
equations whose coefficient may change sign a finite number of times [258].

To avoid difficulties with fuzzy derivatives, some researchers propose solving an equiv-
alent fuzzy integral equation instead of the fuzzy differential equation [17, 70, 236].

In almost all above-mentioned studies, the forcing and solution functions are assumed
to be fuzzy number-valued functions. However, this assumption leads to some difficulties.



306 N. A. GASILOV, Ş. EMRAH AMRAHOV

If to assume that the solution is a fuzzy number-valued function, it is natural to use the
Bede–Gal derivative, which has four types: (1, 1), (1, 2), (2, 1), and (2, 2)-derivatives (in
the second-order case). In later studies, it is assumed that each of these four derivatives
has an essentially local nature. This means that the requirement for a global (i. e., defined
on the entire time interval) (1, 1), (1, 2), (2, 1), or (2, 2)-Bede–Gal differentiable solution
is not fully justified and, in most cases, does not exist. Consequently, we should consider
switching between Bede–Gal differentiability cases at some time moments [47, 48, 165].
For example, to solve the problem, we could start with a (1, 1) derivative and then
switch to a (2, 2) derivative, and so on. This approach raises some questions regarding
how to choose the switching points, what type of derivative to start with, what type
of derivative to switch to, and whether the solution is unique. Further investigations
are needed to answer these questions [110]. Another difficulty related to the Bede–Gal
derivative is that it may give results far from the associated classical solution.

To overcome the above-mentioned difficulties, the main idea of Gasilov et al. [110] is
that fuzzy-valued functions are not the only tool for modeling uncertainties that change
with time. They interpret a fuzzy function as a fuzzy set of real functions. In other words,
as a fuzzy bunch of real functions. Each of these real functions has a certain membership
degree. This approach is useful when avoiding the difficulties of fuzzy derivatives. The
authors consider the forcing function also to be a fuzzy set of real functions. Since the
triangular membership function became a useful tool in many engineering applications
[242], they assume this set to be triangular.

In [111] an FBVP for a second-order linear differential equation with a fuzzy forcing
function is considered. The authors develop the approach proposed in [108, 110] for an
FBVP where only the boundary values were fuzzy. They represent the forcing function as
a triangular fuzzy function defined in [117]. The proposed method is the first application
for FBVPs with a fuzzy forcing function and boundary values. The authors also show
that different solutions can be obtained using various t-norms.

Wang [294, 295, 296, 297] solves two-point boundary value problems for first-order
nonlinear fuzzy differential equations under the Bede–Gal derivative. He proposes a
numerical monotone iterative method to solve the problem. The author proves the
existence of solutions to some boundary value problems for second-order fuzzy differential
equations.

3.3. Studies on fuzzy systems of differential equations

Studies on fuzzy systems of differential equations are shown in Table 3. Buckley and
Feuring [55] and Buckley et al. [57] give a very general formulation of the fuzzy first-
order initial value problem. They first find the crisp solution, fuzzify it, and then verify
whether it satisfies the fuzzy system of differential equations (FSDEs). Rodriguez-Lopez
[259] considers several comparison results for the solutions of FSDEs obtained through
different methods using the Hukuhara derivative. Mizukoshi et al. [213] show that
the solutions of the Cauchy problem obtained by Zadeh’s extension principle and by
using a family of differential inclusions are the same. However, Allahviranloo et al. [27]
demonstrate with an example that the main result of [213] is incorrect. Xu et al. [301]
use complex number representation for α-level sets to solve a fuzzy system and prove
theorems that provide the solutions in this representation. Chalco-Cano and Román-
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Flores [63] study the class of fuzzy differential equations where the dynamics are given
by a continuous fuzzy mapping which is obtained via Zadeh’s extension principle.

Gasilov et al. [107] apply a geometric approach to a fuzzy linear system of differential
equations (FLSDEs) with real coefficients and with the initial conditions described by a
vector of fuzzy numbers. The authors interpret a vector of fuzzy numbers as a rectan-
gular prism in n-dimensional space and show that at any time the solution corresponds
to an n-dimensional parallelepiped. Unlike earlier research, they are not looking for
solutions for FLSDE in the form of a vector of fuzzy functions. Instead, their solutions
constitute a fuzzy set of real vector functions. Each member in the solution set satisfies
the system with a certain possibility.

In articles [29, 105, 106, 112], using the same geometric approach, an algorithm is
proposed to solve linear systems of algebraic equations with crisp coefficients and fuzzy
numbers on the right-hand side. Alamin et al. [9, 10] propose using the geometric
approach, developed by Gasilov et al. [105], to solve fuzzy linear difference equations.

One of the first works on studying fuzzy differential equation systems belongs to
Oberguggenberger and Pittschmann [234]. They apply Zadeh’s extension principle to
the system of differential equations with fuzzy parameters and introduce the notions of
fuzzy solutions and component-wise fuzzy solutions. Buckley, Feuring, and Hayashi [57]
propose two close methods for the solution of linear systems of first-order differential
equations with fuzzy initial conditions. In the first method, the authors fuzzify the crisp
solution and then check to see if its α-cuts satisfy the differential equations. In the
second method, they solve the level-wise system and then check whether the solution
always (i. e., for all t) defines a valid fuzzy number or not. Unfortunately, a solution of
type 1 or type 2, defined in such a way, exists only for specific systems. Xu, Liao, and
Hu [301] also investigate linear first-order fuzzy differential equation systems with fuzzy
initial values. They use the complex number representation for the α-level sets, which
was first proposed by Pearson [240], and prove existence theorems for solutions. The
authors also describe phase portraits of two-dimensional fuzzy dynamical systems. Xu,
Liao, and Nieto [302] study the properties of first-order linear dynamical systems with
fuzzy matrices. They construct the fuzzy solution from the solutions of the classical
differential equations, obtained by using the α-level representation for the fuzzy system.
Fard and Ghal-Eh [96] propose an iterative method to obtain approximate solutions for
linear systems of first-order differential equations with fuzzy constant coefficients. Ghaz-
anfari, Niazi, and Ghazanfari [120] investigate linear first-order fuzzy matrix differential
equation systems using the complex number representation for the α-level sets. Mosleh
and Otadi [222] propose a method for finding a minimal solution of a system of fuzzy

linear differential equations in the form A
·
x(t) = B

·
x(t) +Cx(t). Hashemi, Malekinagad,

and Marasi [129] apply the homotopy analysis method to derive an approximate ana-
lytical solution for the system of fuzzy differential equations. Mosleh [220] presents a
neural network to solve a system of fuzzy differential equations with fuzzy initial values.

As can be seen from Table 3, the Bede–Gal derivative [45] has rarely been used to
solve FSDEs. The reason is that the concept of the Bede–Gal derivative leads to some
difficulties:
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1) The Bede–Gal derivative is mainly a combination of the 1-derivative (or Hukuhara
derivative) and the 2-derivative (or, second type Hukuhara derivative). Under the 1-
derivative, we have a solution, the uncertainty (fuzziness) of which increases with time.
In contrast, under the 2-derivative, we have a solution with decreasing uncertainty. To
describe a solution, the uncertainty of which alternates, we have to alternate 1- and 2-
derivatives. Consequently, we have a priori to divide the time domain into subintervals.
How many subintervals should one divide the time domain? How to choose the length of
each subinterval? Which derivative should be used in each subinterval? How to address
these questions remains an open problem.

2) When the Bede–Gal derivative is used, for an n-dimensional fuzzy system, it is
necessary to examine 2n classical systems. This circumstance limits the number of
researchers who use the Bede–Gal derivative.

3) In general, the solution of a fuzzy differential equation under the Bede–Gal differ-
entiability is not unique. What to do if we have 2 or more solutions? This question has
not been answered yet.

Studying fuzzy differential equation systems is also very important for solving fuzzy
optimal control problems. There are only a few studies on this issue due to the reasons
described above [13, 30, 100, 217, 225, 245, 312].

Studies Coefficients Homogeneity Derivative
Xu et al. [301] real non-homogeneous classical
Xu et al. [302] fuzzy homogeneous classical
Gasilov et al. [107] real homogeneous classical
Hashemi et al. [129] fuzzy homogeneous classical
Mosleh and Otadi [223] fuzzy homogeneous Bede–Gal
Gasilov et al. [113] real non-homogeneous classical
Mondal et al. [218] real homogeneous classical

Tab. 3. Studies investigating systems of fuzzy differential equations,

and the properties of differential equations in these studies.

3.4. Studies on fuzzy partial differential equations

Since knowledge about dynamic systems modeled by differential equations is often in-
complete or vague, many mathematical models of physical, chemical, and biological
phenomena are described by fuzzy partial differential equations (FPDEs) [216]. Studies
on fuzzy partial differential equations are shown in Table 4. In all studies, the consid-
ered equation is homogeneous, the coefficients are real, and the initial and boundary
values are fuzzy numbers. The first study on FPDEs belongs to Buckley and Feuring
[54]. The authors, as they do in their other later works on the fuzzy partial differential
equation, try to obtain a solution by the extension principle, and if they cannot get a
solution, they follow Seikkala’s procedure [271]. However, this approach works only in
some simple cases. Jafelice et al. consider an application of PDEs with fuzzy parameters
obtained through fuzzy rule-based systems [142]. Chen et al. present a new inference
method with applications to FPDEs [72].
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Studies Derivative
Buckley and Feuring [54] classical
Chen et al. [72] classical
Chen and Han [69] Hukuhara
Gasilov et al. [109] classical
Allahviranloo et al. [23] Bede–Gal
Gasilov et al. [115] classical
Mirzaee and Yari [212] Bede–Gal
Macias-Diaz and Tomasiello [197] Hukuhara
Long et al. [192] Bede–Gal
Wasques [298] Interactive
Shen [275] Interactive

Tab. 4. Studies investigating fuzzy partial differential equations, and

the derivatives used in these studies.

Salahshour and Haghi [262] solve the fuzzy heat equation under the Bede–Gal differ-
entiability. Based on the fuzzy Laplace transform, they convert the original fuzzy heat
equation to the corresponding two-point fuzzy boundary value problem.

Karami et al. [160] use fuzzy logic to predict the heat transfer in an air-cooled heat
exchanger equipped with tube inserts of three types (butterfly, classic, and jagged twisted
tape). The results show that the fuzzy technique has a low error rate: the average error
was found to be 0.68% as compared with experimental data.

Bertone et al. [50] investigate heat, wave, and Poisson equations as classical models
of partial differential equations with uncertainty. In each problem, only one parameter
(diffusion coefficient in heat equation, speed coefficient in wave equation, and permit-
tivity coefficient in Poisson equation) is taken to be uncertain, considering it as a fuzzy
number. The authors build the fuzzy solution from the deterministic solution using
Zadeh’s extension principle. They prove the stability of the fuzzy solution concern-
ing the initial-boundary data and show that as time goes to zero, the diameter of the
uncertainty converges to zero.

Some researchers develop numerical methods for solving FPDEs. Allahviranloo and
Kermani [24] use the finite difference method for the numerical solution of FPDEs.
Mikaeilvand and Khakrangin [210] propose a transform method to solve FPDEs. They
use the fuzzy two-dimensional differential transform method of fixed grid size to find
approximate solutions. Štěpnička and Valášek [284] apply the fuzzy transform technique
to find numerical solutions of crisp PDEs.

In the study [115], to solve FPDEs the authors develop the method proposed by
Gasilov et al. [107, 109, 110, 111, 114, 117]. The main difference from all other studies
that investigate FPDEs is that they look for the solution as a fuzzy set (bunch) of real
functions, not as a fuzzy-valued function. The novelties of the above-mentioned study
are:

1) The proposed method is applied to FPDEs for the first time;

2) A more general concept for triangular fuzzy functions is considered, which includes

non-regular ones;
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3) The concept of triangular fuzzy function is extended for the case of two variables;
4) The existence and uniqueness theorem is established for the fuzzy heat equation,
in commonly accepted conditions.
Arif et al. [32] modify the exponential time integrator with an explicit scheme to

solve fuzzy partial differential equations and analyze its stability and convergence. Shen
[275] proposes an approach to solve fuzzy heat and fuzzy wave equations with crisp and
fuzzy coefficients in the space of strongly linearly correlated fuzzy numbers using the
separation of variables method.

3.5. Studies on fuzzy delay differential equations

Many processes can be modeled by delay differential equations (DDEs), also known as
functional equations [34, 128, 180]. In particular, we meet such models in chemistry
and biology [90, 144, 152, 261]. The delays may appear because of different reasons,
such as the physical properties of equipment used in the system, signal transmission, or
measurement of system variables.

Often, when we model a process by deterministic ordinary differential equations, we
ignore some uncertainties or vagueness. In many cases, input values in the model cannot
be measured exactly, and there is a significant amount of uncertainty that we have to
take into account. In other words, unfortunately, in application problems, some of the
parameters carry uncertainty. In these cases, to construct a mathematical model, we
can use stochastic analysis, interval analysis, or fuzzy logic and fuzzy sets, depending on
the type of uncertainty. Many authors have dealt with fuzzy delay differential equations
(FDDEs) from various points of view. Studies on fuzzy delay differential equations
are shown in Table 5. In all studies, the considered equation is homogeneous, the
coefficients are real, and the initial and boundary values are fuzzy numbers. Jafelice,
Barros, and Bassanezi [144] investigate HIV dynamics and propose an FDDE model.
To solve the FDDE, they use Zadeh’s extension principle. Lupulescu and Abbas [195]
consider a model of FDDE under the Liu process [187]. They prove the existence and
uniqueness theorem and investigate the continuous dependence of the solution on initial
data. Malinowski introduces stochastic FDDE and proves the existence and uniqueness
theorem [203]. Guo, Peng, and Xu give oscillation criteria for a class of second-order
FDDEs [126], formulated as a family of differential inclusions [135]. Barzinji, Maan, and
Aris investigate stability analysis of linear fuzzy delay differential equation systems [41].
Khastan, Nieto, and Rodriguez-Lopez consider FDDE under Bede–Gal differentiability
and prove the existence of two fuzzy solutions (one for the first type, the other for the
second type of differentiability) [166].

Min, Huang, and Zhang extend some known results of fuzzy differential equations
to fuzzy differential inclusions and prove local and global existence theorems for fuzzy
delay differential inclusions [211].

Some authors investigate FDDEs under the terminology “fuzzy functional differen-
tial equations” (FFDEs). Balasubramaniam and Muralisankar [36] prove the existence
and uniqueness of fuzzy solutions for the nonlinear fuzzy neutral functional differential
equation via the Banach fixed-point approach. Park and Jeong [239] get the existence
and uniqueness result for random fuzzy functional differential equations by using the
method of successive approximations. Donchev and Nosheen [86] study FFDEs with
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continuous right-hand sides and prove the existence and uniqueness of a solution under
dissipative-type conditions. They also show the continuous dependence of the solution
on the initial conditions and analyze the existence of the solution on an infinite interval
and its stability. Tri et al. [288] obtained different types of solutions to FFDEs and
sheaf FFDEs generated by the use of the Bede–Gal derivative.

Hoa et al. [132] investigate stability for FFDEs by defining a new Lyapunov-like
function. Vu and Hoa [292] establish the existence and uniqueness of the solution to
impulsive fuzzy functional differential equations under Bede–Gal differentiability via the
principle of contraction mappings.

In the study [99], Fatullayev et al. investigate inhomogeneous FDDE in which the
initial function and the source function are fuzzy. To solve the FDDE they develop the
method proposed by Gasilov et al. [111, 117] for fuzzy differential equations. The initial
function and source function they represent in the form of a triangular fuzzy function
(TFF) defined in [111, 117]. Under this approach, the authors show the existence and
uniqueness of the solution for the considered problem. They demonstrate the developed
method on inhomogeneous FDDEs of the first order. In the literature, it is a usual prac-
tice that solution methods, proposed for fuzzy differential equations without delay, are
generally explained on equations of second order for clarity. However, when differential
equations contain delay, explanations are given for equations of the first order. This
circumstance also occurs in all the above-cited studies. The reason can be explained
as follows. (1) Delay differential equations are more general (consequently, harder to
solve) than the ones without delay. As a result of this, for linear differential equations
without delay, there are strong theories and effective solution methods, while for delay
differential equations, the findings are modest. Therefore, to develop a method for delay
differential equations, inspired by an idea for usual differential equations, always, spe-
cific derivations and additional efforts are always required. (2) When one solves a fuzzy
problem, the types of fuzzy input are more critical than their numbers. For example, by
applying Zadeh’s extension principle, one can easily solve nth order homogeneous linear
differential equations with fuzzy initial values (i. e., with n fuzzy inputs in the form of
fuzzy numbers). But the appearance of a fuzzy forcing function leads to that, even for
the differential equation of first order (i. e., for the problem with 2 fuzzy inputs in the
form of fuzzy functions), it becomes unclear how to use the principle. (3) One can see
that the proposed method can be adapted for FDDEs of higher order.

Studies Derivative
Jafelice et al. [144] classical
Kichmarenko and Skripnik [175] Hukuhara
Lupulescu [194] Hukuhara
Farahi and Barati [93] classical
Vu et al. [293] Hukuhara
Fatullayev et al. [99] classical
Wang [297] Bede–Gal

Tab. 5. Studies investigating fuzzy delay differential equations, and

the derivatives used in these studies.
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4. COMPARISON OF DIFFERENT APPROACHES

In the following part of the text, we compare our approach ([110, 111, 114, 117]) with
benchmark approaches, namely, Zadeh’s extension principle and the Bede–Gal derivative
approach. To make the comparison clearer, we use numerical examples.

4.1. A comparison based on the initial value problem

To make it easy to understand the steps involved in solving the fuzzy problem presented
below, we first examine a related real problem.

Example 4.1. Consider the second-order initial value problem y′′ + 2y′ = 3y,
y(0) = a,
y′(0) = b.

(3)

The solutions of the differential equation y′′ + 2y′ = 3y corresponding to the initial
conditions y(0) = 1, y′(0) = 0 and y(0) = 0, y′(0) = 1 are y = w1(t) = 1

4

(
3et + e−3t

)
and y = w2(t) = 1

4

(
et − e−3t

)
, respectively. Then the solution of IVP (3) is

y = aw1(t) + bw2(t)

or

y = yab(t) =
1

4

[
a
(
3et + e−3t

)
+ b

(
et − e−3t

)]
. (4)

Below, we consider the same problem (3) but with fuzzy inputs.

Example 4.2. Solve the following second-order fuzzy initial value problem:
Ỹ ′′ + 2Ỹ ′ = 3Ỹ ,

Ỹ (0) = Ã,

Ỹ ′(0) = B̃,

(5)

where Ã = (0, 1, 2) and B̃ = (−4, −3, −2).
First, we solve the problem using our approach [110, 111, 114, 117]. We see this as

an opportunity to explain the approach once again.
We interpret FIVP (5) as a set of real IVPs, which are built by taking a number a from

Ã and a number b from B̃ (more precisely, a ∈
[
Ã
]
0

= [0, 2] and b ∈
[
B̃
]
0

= [−4, 2]),
i. e., as a set of IVPs (3). To each IVP (3) and its solution function, we assign the
membership degree µab = min

{
µÃ(a), µB̃(b)

}
. The bunch (set) of all these solution

functions, together with their membership degrees, we define as the solution of FIVP
(5). Then, for the upper and lower bounds of the fuzzy bunch, we have:

y(t) = max
a∈[0, 2], b∈[−4, 2]

yab(t),

y(t) = min
a∈[0, 2], b∈[−4, 2]

yab(t),
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where yab(t) is determined by (4). Since w1(t) ≥ 0 and w2(t) ≥ 0 on t ≥ 0, the max is
attained at a = a = 2, b = b = 2, and the min at a = a = 0, b = b = −4. In the result,
we have the upper bound, the crisp solution (the solution with membership degree 1),
and the lower bound be

y(t) = et + e−3t,
ycr(t) = e−3t,
y(t) = −et + e−3t.

Since the differential equation is linear, and the initial values are triangular fuzzy num-
bers, the value of the fuzzy solution at a time t is determined as the triangular fuzzy
number Ỹ (t) =

(
−
(
et − e−3t

)
, e−3t, et + e−3t

)
. We present the obtained solution in

Figure 1.
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Fig. 1. The fuzzy solution, obtained by the proposed method, for

Example 4.2. This solution coincides with the solutions obtained by

Zadeh’s extension principle and by the generalized derivative

approach. The dashed line depicts the crisp solution, the continuous

lines represent the lower and upper bounds of the fuzzy solution.

If in (4) we replace the real values with the corresponding fuzzy values, we obtain the
solution by Zadeh’s extension principle:

Ỹ = 1
4

[(
3et + e−3t

)
Ã +

(
et − e−3t

)
B̃
]
, or

Ỹ = 1
4

[(
3et + e−3t

)
(0, 1, 2) +

(
et − e−3t

)
(−4, −3, −2)

]
.

Thus, the solution by Zadeh’s extension principle is the fuzzy-valued function

Ỹ =
(
−
(
et − e−3t

)
, e−3t, et + e−3t

)
. (6)

Graphically, this solution is the same as the one obtained by our approach (see Figure 1).
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Now, we look for a solution under the Bede–Gal differentiability. If we search for the
global (1, 1)-solution for FIVP (5), we will have the same solution. To sum up, all three
approaches (our approach, Zadeh’s extension principle, and the Bede–Gal derivative
approach) give the same solution for the example under consideration (expecting the
differences in representations/interpretations). It is worth noting that such examples,
where various approaches work and give solutions that coincide with other approaches,
inspire researchers to insist on their favorite approach and hope that their approach will
cover a wider class of problems after some improvements. Unfortunately, the reality is
different. To see why, let us consider the following FIVP:

Ỹ ′′ + 2Ỹ ′ − 3Ỹ = 0,

Ỹ (0) = Ã,

Ỹ ′(0) = B̃.

(7)

The only difference of this FIVP from (5) is that the term 3Ỹ is translated to the left-
hand side of the differential equation. This translation does not change the solution if
we consider a problem under the real calculus. But, if we investigate (7) under fuzzy
calculus, it does not have a solution. (The reason is that since the initial values are proper
fuzzy numbers, the problem can have only a proper fuzzy solution, i. e., a solution with
non-zero fuzziness. But in this case, the left-hand side of the equation will also be a
proper fuzzy quantity. Therefore, it cannot be equal to 0, i. e., to the right-hand side.)
It can be easily seen that by our approach and by Zadeh’s extension principle, FIVP
(7) has a solution, which coincides with the solution to (5). In summary, the considered
example points to one of the main drawbacks of the fuzzy calculus approach: Even IVPs
with well-behaved input data may not have a solution under this approach.

4.2. Example of application of Zadeh’s extension principle

In this subsection, we consider an application of Zadeh’s extension principle to solving
fuzzy differential equations.

Example 4.3. Consider the FIVP 
Ỹ ′′ = C̃2 Ỹ

Ỹ (0) = Ã

Ỹ ′(0) = 0

(8)

where C̃ =
(
1
3 ,

1
2 ,

2
3

)
and Ã = (2, 2.6, 3).

The associated real IVP is  y′′ = c2 y
y(0) = a
y′(0) = 0

(9)

and its solution is y = a ect+e−ct

2 , or y = a cosh(ct), in another representation. If we

replace a and c with Ã and C̃, respectively, in the last representation, we get

Ỹ = Ã cosh(t C̃),

which coincides with the solution according to Zadeh’s extension principle (see Figure 2).
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Fig. 2. The fuzzy solution, obtained by Zadeh’s extension principle,

for Example 4.3. Our proposed approach gives the same solution.

Remark. Let us emphasize the following circumstance concerning the incorrect imple-
mentation of Zadeh’s extension principle. In the two examples given above (Examples
4.2 and 4.3), changing real parameters to the related fuzzy values gave the solution by
the extension principle. However, this procedure is not valid in general. To be sure, let
us consider Example 4.3 and represent the crisp solution as y = 1

2a(ect + e−ct). If we

replace the real parameters (a and c) with the corresponding fuzzy values (Ã and C̃),
we obtain

Ỹ =
1

2
Ã
(
etC̃ + e−tC̃

)
=

1

2
(2, 2.6, 3)

(
e(

1
3 t,

1
2 t,

2
3 t) + e(−

2
3 t,−

1
2 t,−

1
3 t)

)
, (10)

for which

y(t) = e
1
3 t + e−

2
3 t and y(t) =

3

2

(
e

2
3 t + e−

1
3 t
)
.

However, our approach gives a fuzzy solution (see Figure 2) with

y(t) = e
1
3 t + e−

1
3 t and y(t) =

3

2

(
e

2
3 t + e−

2
3 t
)
.

It is easy to see that the lower bound obtained by the extension principle is less by

∆y(t) = e−
1
3 t − e−

2
3 t, while the upper bound is larger by ∆y(t) = 3

2

(
e−

1
3 t − e−

2
3 t
)

.

Therefore, the fuzziness of the solution obtained by the improperly implemented exten-
sion principle is rougher than that of our approach.
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Considering the steps taken in this example, we can state two significant difficul-
ties encountered in the implementation of the extension principle to fuzzy differential
equations. The first and main difficulty is that the solution to the associated real prob-
lem may not be expressed analytically. The second difficulty arises in the case when a
fuzzy-valued function is involved as a parameter. In this case, when constructing the as-
sociated real problem, it is unclear what kind of real function to replace the fuzzy-valued
function with. (Note that using the concept of a “fuzzy bunch of functions” helps over-
come this difficulty.) In addition, it is usually very difficult to solve differential equations
analytically when there is a function f(t) among the parameters.

The extension principle is a basic principle of fuzzy set theory. The new approaches
being proposed should give results compatible with it. Therefore, the extension principle
can be used as a tool for verifying new approaches, and if a newly proposed approach
does not give compatible results, it should be questioned.

4.3. Advantage of our proposed approach over Zadeh’s extension principle

We provide two examples to explain the advantages of the proposed approach more
clearly.

Example 4.4. Consider the FBVP
Ỹ ′′ = C̃2 Ỹ

Ỹ (0) = Ã

Ỹ (l) = B̃

(11)

where C̃ =
(
1
3 ,

1
2 ,

2
3

)
, Ã = (2, 2.6, 3), B̃ = (−0.2, 0, 0.3) and l = 3.

The associated real BVP is  y′′ = c2 y
y(0) = a
y(l) = b

(12)

and its solution is

y = y(t, a, b, c) =
1

sinh cl
(a sinh c(l − t) + b sinh ct) (13)

The solution of FBVP (11) by the Extension principle is[
Ỹ
(
t, Ã, B̃, C̃

)]
α

= y (t, Aα, Bα, Cα) ,

where y = y(t, a, b, c) is defined by (13).
The fuzzy solution is depicted in Figure 3. Our proposed approach gives the same

solution except for the difference in interpretation.

Below we consider a new example that is obtained from FBVP (11) by replacing the

fuzzy number C̃ with a fuzzy function C̃(t) and adding a new fuzzy function F̃ (t).
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Fig. 3. The fuzzy solution, obtained by Zadeh’s extension principle,

for Example 4.4.

Example 4.5. Consider the FBVP
Ỹ ′′ = C̃2(t) Ỹ + F̃ (t)

Ỹ (0) = Ã

Ỹ (3) = B̃

(14)

where C̃(t) =
(

1
3 − 1

6e
−(t−1)2 , 1

2 ,
2
3 + 1

6e
−(t−1)2

)
, F̃ (t) = (−1 + sin t, 0, 1 − cos t), Ã =

(2, 2.6, 3) and B̃ = (−0.2, 0, 0.3).

In contrast to the previous example, it is difficult to construct an associated real BVP
for the considered FBVP (14). The main reason is that it is unclear what real functions

can represent the fuzzy functions C̃ and F̃ . (Note that even if we could describe the
fuzzy functions by real functions c and f , respectively, it would be difficult to find an an-
alytical solution to the differential equation y′′ = c2(t)y+f(t).) Therefore, no associated
real solution can be obtained, which would then be transformed into a fuzzy solution.
Thus, the extension principle does not work for the considered example. However, if
we interpret the fuzzy functions C̃ and F̃ as triangular fuzzy functions (namely, if we

represent C̃ =
〈

1
3 − 1

6e
−(t−1)2 , 1

2 ,
2
3 + 1

6e
−(t−1)2

〉
and F̃ = ⟨−1 + sin t, 0, 1 − cos t⟩), we

can reformulate FBVP (14) as a set of real BVPs. Based on the solutions of these real
BVPs, we can construct a fuzzy solution to FBVP (14). We depict the fuzzy solution in
Figure 4. The following points regarding the solution can be noted. When moving from
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Fig. 4. The fuzzy solution, obtained by the proposed approach, for

Example 4.5.

FBVP (11) to FBVP (14), the boundary values have not changed, but the fuzziness

of C̃ has increased. In addition, a new fuzziness, F̃ , has been added to the equation.
Therefore, in the graphical representation of the solution, the left and right boundaries
should remain the same, but the increase in the fuzziness of the input parameters should
lead to an increase in the fuzziness of the solution in the intermediate part. It can be
confirmed from the presented figures that this circumstance indeed takes place. The
considered example shows that our proposed approach works even in cases where the
extension principle becomes insufficient. The above-mentioned cases can be specified as
cases where it is difficult to construct an associated real problem and where it is hard
to represent a real solution by an analytical formula.

At the end of this subsection, we would like to address the issue of the applicability of
our proposed approach. The proposed approach can be applied to any fuzzy differential
equation, regardless of whether it is linear or not. However, in the linear case, the
approach works effectively from the point of view of computational complexity. Namely,
to build the fuzzy solution, in this case, it is sufficient to solve a much smaller number
of real problems. For example, assume that we solve a FIVP for a second-order crisp
differential equation with fuzzy initial values. If the differential equation is linear, then
to construct the fuzzy solution, it is sufficient to solve only 4 classical IVPs (for edge
values of the initial values), i. e., the computational complexity of the approach is O(1)
in terms of real problems to be solved. But, if the differential equation is non-linear,
then the complexity can increase up to O(n2), where n is the number of grid points used
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to approximate each fuzzy initial value. It should be noted that, in the case where the
solution of the associated real problem monotonically depends on the input values, the
evaluation can be improved.

4.4. A comparison based on boundary value problem

We first present a real BVP, which we will then use to solve the subsequent FBVP.

Example 4.6. Consider the second-order boundary value problem y′′ + 5y = 2y′,
y(0) = a,
y
(
3π
4

)
= b.

(15)

The solution is
y = a et cos 2t− b et−

3π
4 sin 2t. (16)

Example 4.7. Now let us examine the second-order fuzzy boundary value problem
Ỹ ′′ + 5Ỹ = 2Ỹ ′,

Ỹ (0) = Ã,

Ỹ
(
3π
4

)
= B̃,

(17)

where Ã = (−0.5, 0, 0.5) and B̃ = (1, 2, 3).
To obtain the solution by Zadeh’s extension principle, we replace the real values in

(16) with the corresponding fuzzy values:

Ỹ =
(
et cos 2t

)
Ã +

(
−et−

3π
4 sin 2t

)
B̃. (18)

Thus, the solution by Zadeh’s extension principle is (See Figure 5)

Ỹ =
(
et cos 2t

)
(−0.5, 0, 0.5) +

(
−et−

3π
4 sin 2t

)
(1, 2, 3). (19)

For the solution by our approach, we have:

y(t) =


0.5 et cos 2t− et−

3π
4 sin 2t,

−0.5 et cos 2t− et−
3π
4 sin 2t,

−0.5 et cos 2t− 3 et−
3π
4 sin 2t,

0 ≤ t < π
4

π
4 ≤ t ≤ π

2
π
2 ≤ t ≤ 3π

4

(20)

ycr(t) = −2 et−
3π
4 sin 2t (21)

y(t) =


−0.5 et cos 2t− 3 et−

3π
4 sin 2t,

0.5 et cos 2t− 3 et−
3π
4 sin 2t,

0.5 et cos 2t− et−
3π
4 sin 2t,

0 ≤ t < π
4

π
4 ≤ t ≤ π

2
π
2 ≤ t ≤ 3π

4 .
(22)

Graphically, the solution by our approach is the same as the one obtained by Zadeh’s
extension principle (See Figure 5).
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Fig. 5. The fuzzy solution, obtained by Zadeh’s extension principle,

for Example 4.7. This solution coincides with the solution obtained by

the proposed approach.

Now, let us consider whether the FBVP (17) has a solution under fuzzy calculus

(under Bede–Gal derivative). Since B̃ (the right-end value) is wider than Ã (the left-
end value), the solution can only be with expanding fuzziness, i. e., it can be either
(1,1) or (1,2)-differentiable. First, let us search for the (1,1)-differentiable solution. For
the fuzzy solution we use the α-cut representation: Yα(t) = [yα(t), yα(t)]. For globally
(1,1)-solution, Y ′

α = [yα
′, yα

′] and Y ′′
α = [yα

′′, yα
′′]. If to put in (17), we have: yα

′′ + 5yα = 2yα
′,

yα(0) = 0.5(1 − α),
yα

(
3π
4

)
= 3 − α,

yα
′′ + 5yα = 2yα

′,
yα(0) = −0.5(1 − α),
yα

(
3π
4

)
= 1 + α.

(23)

We can see that the equations and boundary conditions for yα and yα are independent.
Therefore, they can be determined separately. For α = 0, we have:

y0(t) = 0.5 et cos 2t− 3 et−
3π
4 sin 2t,

y0(t) = −0.5 et cos 2t− et−
3π
4 sin 2t.

These functions are depicted in Figure 6. It can be seen that the upper bound passes
lower on some intervals. Therefore, a proper fuzzy solution is not determined. Thus,
Example 4.7 does not have a globally (1,1)-differentiable solution.

Similar (but more cumbersome) calculations show that a global (1,2)-solution also
does not exist. To sum up, FBVP (17) has solutions according to our approach and
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Fig. 6. The upper and lower solutions to the (1,1)-problem, created

for Example 4.7. The upper solution (continuous line) passes lower on

some intervals. Therefore, Example 4.7 does not have a globally

(1,1)-differentiable solution.

by Zadeh’s extension principle, and these solutions are in accordance (see Figure 5).
However, the problem has no solution under the Bede–Gal differentiability concept. This
fact once again indicates that the fuzzy calculus approach is not sufficient for solving
fuzzy differential equations.

5. COMPARISON WITH THE APPROACH USING INTERACTIVE FUZZY
NUMBERS

One of the important concepts discussed by some researchers recently is the concept of
“interactive (or correlated) fuzzy numbers”. Let us illustrate this concept through the
following example.

Assume that during a production process, it is necessary to heat a substance to a
temperature of a = 50◦C. Since the production conditions and the equipment used are
not perfect, this value cannot be achieved with certainty. Let us assume that the provided
temperature is modeled by the fuzzy number Ã = (45, 50, 55)◦C. If the above-mentioned
values are expressed in Fahrenheit, then they become b = f(a) = 9

5a + 32 = 122◦F and

B̃ = (113, 122, 131)◦F , respectively. Now let us consider the fuzzy numbers Ã and B̃.
In the example under consideration, each time, when, for example, the value a = 52.5
is taken from Ã, the value b = 126.5 will be realized from B̃. In other words, there is
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a relationship between the elements of Ã and B̃. In such a case, Ã and B̃ are called
correlated (or interactive, in the general sense of the concept) fuzzy numbers. Since the
function b = f(a) = 9

5a+ 32, which determines the relationship between the elements of

sets Ã and B̃, is linear, then Ã and B̃ are called linearly correlated fuzzy numbers.
More generally, if there is a relationship between elements of sets Ã and B̃ via a

function (linear or non-linear) b = f(a) (or, in other words, if B̃ = f(Ã)), then Ã and

B̃ are simply called correlated fuzzy numbers.
Interactive fuzzy numbers are a generalization of correlated fuzzy numbers. In detail,

this statement can be explained as follows. For given independent fuzzy numbers Ã and
B̃, the Cartesian product Ã × B̃ consists of real pairs (a, b) with membership degrees,

defined as µÃ×B̃(a, b) = min
{
µÃ(a), µB̃(b)

}
. Thus, if Ã and B̃ are independent, ge-

ometrically, the set Ã × B̃ forms a fuzzy rectangle in the xy-coordinate plane. But, if
B̃ = f(Ã), i. e., if they are correlated, then the pairs (a, b) = (a, f(a)) constitute a fuzzy

curve C̃ (i. e., a subset of Ã × B̃), lying in the above rectangle. In the general case, if

in the problem under consideration, (a, b) ∈ S̃ for all possible pairs, where S̃ ⊂ Ã × B̃,

then the fuzzy numbers Ã and B̃ are called interactive fuzzy numbers.
It is worth highlighting that the interactivity is not a mathematical property: the

numbers Ã = (45, 50, 55) and B̃ = (113, 122, 131), which are seen as interactive fuzzy

numbers above, may not be interactive in another context (for example, if Ã is a tem-

perature value and B̃ is a location value). The fact that some parameters in the problem
are correlated can be interpreted as additional information on the problem, and allows
one to express the fuzziness of the solution more accurately (precisely). As an example,
let us consider the FBVP, which was examined in [110] and [266]:

X̃ ′′(t) + 16X̃(t) = 0,

X̃(0) = Ã = (−1, 0, 1),

X̃(2) = B̃ = (−0.5, 0, 0.5).

(24)

If Ã and B̃ are considered to be non-interactive (or independent), the solution will be

X̃(t) = sin(8−4t)
sin 8 (−1, 0, 1) + sin 4t

sin 8 (−0.5, 0, 0.5) or, in other words,

X̃(t) = 1
sin 8 [2 sin(8 − 4t) (−0.5, 0, 0.5) + sin 4t (−0.5, 0, 0.5)]
= 1

sin 8 [|2 sin(8 − 4t)| + |sin 4t|] (−0.5, 0, 0.5).

But if they are considered to be interactive through Ã = 2B̃, the solution will be

X̃interactive(t) = 1
sin 8 (2 sin(8 − 4t) + sin 4t) (−0.5, 0, 0.5)

= 1
sin 8 |2 sin(8 − 4t) + sin 4t| (−0.5, 0, 0.5).

The fuzziness of the second solution is less. For example, at t = 0.5,
X̃(0.5) = 1

sin 8 [2 sin 6 (−0.5, 0, 0.5) + sin 2 (−0.5, 0, 0.5)] ≈ (−0.6007, 0, 0.6007),
but

X̃interactive(0.5) = 1
sin 8 (2 sin 6 + sin 2) (−0.5, 0, 0.5) ≈ (−0.3183, 0, 0.3183).

In summary, the concept of interactive fuzzy numbers is undoubtedly a useful tool
that allows us to determine the uncertainty of the solution more carefully. However,
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we believe that constructing a calculus based on this concept should be done with the
utmost care.

First of all, as we noted before, a priori, two fuzzy numbers are neither interactive
nor non-interactive. Based on the problem under consideration, we accept them to be
interactive or independent. Therefore, interactivity is not a general property of fuzzy
numbers but represents an additional condition on them.

On the other hand, the concept can be easily used in the framework of the extension
principle without any special means. We argue this statement as follows. Suppose we
have a fuzzy problem with two fuzzy inputs, say Ã and B̃, which are fuzzy numbers, and
let them be interactive through a function b = f(a). Also, let x(t, a, b) be the solution of
the associated real problem. Then, by the extension principle, the solution of the fuzzy

problem is
[
X̃(t, Ã, B̃)

]
α

=
{
x(t, a, f(a)) | a ∈

[
Ã
]
α

}
.

Our proposed approach is also easily adopted in the case of interactive fuzzy numbers.
In this case, we interpret the fuzzy problem as a set of real problems that are built by
taking a real number a from Ã and simultaneously b = f(a) from B̃. Therefore, we
have a set of real problems with a single parameter a. Based on their solutions, we can
constitute the fuzzy solution.

Finally, hastily created arithmetic and calculus are difficult to implement in practice.
Often, even their authors themselves get confused when working with them. Below, we
provide some examples to support our claim.

First, we think that there is a difficulty with the interactive differentiability (F-
differentiability), proposed in [241]. Below, we give our arguments. Let us consider the

function F̃ (t) = (−t2, 0, t2), or F̃ (t) = t2(−1, 0, 1), in another representation. It

is natural to expect its derivative be F̃ ′(t) = 2t(−1, 0, 1). Note that the considered

function is represented by its α-cuts as follows:
[
F̃ (t)

]
α

=
[
fα(t), fα(t)

]
, where fα(t) =

t2(α− 1) and fα(t) = t2(1 − α).

Below, we examine what is the interactive derivative of F̃ (t) according to Theorem 2,

provided by the authors of [241]. Since F̃ (t) = t2(−1, 0, 1) and F̃ (t + h) = (t +

h)2(−1, 0, 1), we can see that F̃ (t+h) = (t+h)2

t2 F̃ (t) =
(
1 + h

t

)2
F̃ (t). Thus, F̃ (t+h) =

Ft,h

(
F̃ (t)

)
, where Ft,h(z) =

(
1 + h

t

)2
z. Then, F ′

t,h(z) =
(
1 + h

t

)2
. For clarity, let

t ∈ [1, 2]. It can be seen that F ′
t,h(z) > 1, for positive h, while 0 < F ′

t,h(z) < 1, for
negative h. Since h can be both positive and negative in each of the three items of
Theorem 2, the condition of no item is satisfied. Thus, even for a simple fuzzy function,
Theorem 2 does not provide a derivative.

Now, let us focus on another circumstance. Since F̃ (t) = t2(−1, 0, 1) and F̃ (t+h) =

(t + h)2(−1, 0, 1), we can also interpret that F̃ (t + h) = −
(
1 + h

t

)2
F̃ (t). Then,

F̃ (t + h) = Ft,h

(
F̃ (t)

)
with Ft,h(z) = −

(
1 + h

t

)2
z. Since F ′

t,h(z) = −
(
1 + h

t

)2
,

we have F ′
t,h(z) < 0, for sufficiently small h. Then, by Theorem 2, item iii, we get:[

F̃ ′
F (t)

]
α

=
{(

fα
)′

(t)
}

= {2t(α− 1)}, i. e.,
[
F̃ ′
F (t)

]
α

= {−2t(1 − α)}. The obtained

derivative is not a proper fuzzy value. To be sure, take t = 1.5, for example. We have[
F̃ ′
F (1.5)

]
1

= {0},
[
F̃ ′
F (1.5)

]
0

= {−3} and, therefore,
[
F̃ ′
F (1.5)

]
1
̸⊆

[
F̃ ′
F (1.5)

]
0
, i. e.,



324 N. A. GASILOV, Ş. EMRAH AMRAHOV

the nesting condition of α-cuts is not satisfied.
Thus, the main theorem about the F-differentiability does not work even for simple

functions. The derivatives in items i and ii are 1st and 2nd Bede–Gal derivatives.
Finally, there is confusion, as indicated above, with the item iii.

In the next two subsections, we provide solutions to two fuzzy application problems
and explain some misunderstandings.

5.1. The population growth problem

Let us consider the following fuzzy model of population dynamics, namely Verhulst
logistic growth model [241]:{

X̃ ′(t) = a X̃(t)
(
k − X̃(t)

)
,

X̃(0) = X̃0,
(25)

where a and k are positive real constants, X̃0 is a “positive” fuzzy number. Below, we
obtain the solution of the FIVP by the extension principle.

Fig. 7. The solution of FIVP (25), obtained by Zadeh’s extension

principle. Our proposed approach gives the same solution.

The associated real problem is as follows:{
x′(t) = a x(t) (k − x(t)) ,
x(0) = x0.

(26)
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This first-order differential equation, also called the logistic equation, can be solved by
separating variables or by treating it as a Bernoulli equation. The obtained solution of
IVP (26) can be represented as

x(t, x0) =
k

1 +
(

k
x0

− 1
)
e−akt

. (27)

It can be seen that the solution increases with x0. Then, the solution to the fuzzy
problem (25) is easily obtained by the extension principle:

Xα(t) =
[
Xα(t), Xα(t)

]
=

[
x
(
t,X0,α

)
, x

(
t,X0,α

)]
, (28)

where the function x(t, x0) is given by (27).

Figure 7 shows the solution of (25) with a = 0.01, k = 5.8 and X̃0 = (0.5, 1.4, 2.2).
Let us compare Figure 7 with the solution obtained using the interactivity concept by
the authors of [241]. It can be seen that their solution differs from the solution by
the extension principle. This circumstance indicates that the arithmetic and calculus
proposed by the authors have some shortcomings.

5.2. The problem of determining the shape of a suspension bridge cable

In the real case, the problem of finding the shape of a suspension bridge cable that is
fastened at each end and carries a distributed load is modeled by the following BVP
[266]: 

x′′(t) = β

√
1 + (x′(t))

2
,

x(0) = h0,
x(T ) = hT ,

(29)

where β > 0 and T > 0 are given parameters. The differential equation is non-linear,
and its general solution is

x(t, h0, hT ) = c1 +
1

β
cosh (β (t + c2)) ,

where the constants c1 and c2 depend on the boundary values h0 and hT . They can be
represented as c1 = c1 (h0, hT ) and c2 = c2 (h0, hT ), and satisfy the following system:{

c1 + 1
β cosh (βc2) = h0,

c1 + 1
β cosh (β (T + c2)) = hT .

If to express c1 through c2 by using the first equation, the solution of the BVP can be
rewritten as

x(t, h0, hT ) = h0 +
1

β
[cosh (β (t + c2)) − cosh (βc2)] , (30)

where c2 is the solution of the non-linear algebraic equation

1

β
[cosh (β (T + c2)) − cosh (βc2)] = hT − h0. (31)
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The function on the left-hand side, G (c2) = 1
β [cosh (β (T + c2)) − cosh (βc2)], is a

strongly increasing function with range (−∞, ∞). Therefore, the solution of (31),
c2 = c2 (h0, hT ), is unique and increases if the right side hT − h0 increases. Conse-
quently, c2 (h0, hT ) increases with respect to hT and decreases with respect to h0, that
is, ∂c2

∂hT
> 0 and ∂c2

∂h0
< 0. Below we show that ∂x

∂h0
> 0 and ∂x

∂hT
> 0, i. e., the solution

function x(t, h0, hT ) is increasing with respect to both h0 and hT .
From (30), we have

∂x

∂hT
= [sinh (β (t + c2)) − sinh (βc2)]

∂c2
∂hT

.

Since sinh is an increasing function and ∂c2
∂hT

> 0, we obtain ∂x
∂hT

> 0 (on t > 0).
From (30) and (31), we also have

∂x

∂h0
= 1 + [sinh (β (t + c2)) − sinh (βc2)]

∂c2
∂h0

and

[sinh (β (T + c2)) − sinh (βc2)]
∂c2
∂h0

= −1,

respectively. Then, on t > 0,

∂x

∂h0
= 1 − sinh (β (t + c2)) − sinh (βc2)

sinh (β (T + c2)) − sinh (βc2)
> 1 − 1 = 0,

because sinh is an increasing function.
Now, let us consider the fuzzy version of the problem under investigation:

X̃ ′′(t) = β

√
1 +

(
X̃ ′(t)

)2

,

X̃(0) = H̃0,

X̃(T ) = H̃T .

(32)

Since the solution of the associated classical BVP (29) is increasing with respect to both
h0 and hT , the extension principle gives the solution

Xα(t) =
[
Xα(t), Xα(t)

]
, (33)

where

Xα(t) = x
(
t, H0,α, HT,α

)
,

Xα(t) = x
(
t, H0,α, HT,α

)
,

and the function x(t, h0, hT ) is given by (30) and (31).

In Figure 8, we show the solution of FBVP (32), where β = 0.5, T = 1, H̃0 =

(0.6, 1, 1.4) and H̃T = (1.2, 1.5, 1.7). From this example, it can be seen that there
is some confusion in the argumentation of the authors of [266]. In particular, their

statement that “the fuzzy solution can be seen as the fuzzy number H̃0 moving along”
the crisp function is not correct in general. It is correct if and only if the uncertainties
of H̃0 and H̃T are the same.
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Fig. 8. The solution of FBVP (32), obtained by Zadeh’s extension

principle. Our proposed approach gives the same solution.

6. SOME COMMENTS ON THE GRANULAR DIFFERENTIABILITY APPROACH

Let us consider another approach, which has also gained attention in recent years,
namely, the granular differentiability approach. This approach can be briefly explained
as follows. A fuzzy number ũ can be described by its µ-level sets (µ-cuts) [ũ]µ =[
uµ, uµ

]
. Each µ-level set is an interval, which can be parameterized by its left-

end point and width (diameter): [ũ]µ =
{
uµ +

(
uµ − uµ

)
αu

∣∣∣ αu ∈ [0, 1]
}

. (To this

end, note that the parametrization [ũ]µ =
{
a | a ∈

[
uµ, uµ

]}
is simpler). Based on

this fact, it is proposed to match a fuzzy number ũ with its parametrization function

ugr (µ, αu) = uµ+
(
uµ − uµ

)
αu. (This function is named “horizontal membership func-

tion”. The name is unfortunate because the value of the function is not a membership
degree from [0, 1].) The followers of the approach hope that this matching can allow
them to avoid the deficiencies of fuzzy arithmetic and calculus. Unfortunately, they get
confused right at the start. For example, the authors of [209] state that ũ− ũ = 0 under
granular arithmetic. This circumstance immediately leads to results that are hard to
accept. To be sure, let us consider the function f̃(t) =

(
−(1 + t), 0, 1 + t2

)
− (−1, 0, 1)

on [−0.5, 0.5]. This function is expected to be continuous. Let us examine whether
this function is continuous at t = 0 under granular arithmetic. At t = 0, we have
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f̃(0) = (−1, 0, 1) − (−1, 0, 1) = 0, since ũ− ũ = 0 by [209]. Let us denote the operands

of f̃(t) as ṽ and ũ, respectively: ṽ =
(
−(1 + t), 0, 1 + t2

)
and ũ = (−1, 0, 1). Then,

vgr (µ, αv) = (1 − µ)
[
−(1 + t) +

(
2 + t + t2

)
αv

]
, ugr (µ, αu) = (1 − µ) [−1 + 2αu] and

fgr (t, µ, αv, αu) = vgr (µ, αv)−ugr (µ, αu) = (1−µ)
[
−t +

(
2 + t + t2

)
αv − 2αu

]
. Then,

fµ(t) = inf
β≥µ

min
αv, αu

fgr (t, β, αv, αu) = (1 − µ)(−2 − t) and

fµ(t) = sup
β≥µ

max
αv, αu

fgr (t, β, αv, αu) = (1 − µ)
(
2 + t2

)
.

Therefore, f̃(t) =
(
−(2 + t), 0, 2 + t2

)
. When t goes to 0, f̃(t) goes to (−2, 0, 2), which

is different from f̃(0) = 0. Consequently, f̃(t) is not continuous at t = 0 under granular
operations. The considered example also demonstrates that granular subtraction is not
a continuous operation. This fact points to a significant drawback of granular arithmetic
and, therefore, granular calculus.

We also would like to draw attention to the following circumstances related to studies
on the granular approach. Usually, when a new arithmetic is proposed, the results for
the base case are given first. However, followers of granular arithmetic do not explicitly
indicate the sum, difference, product, and division of two triangular fuzzy numbers under
granular arithmetic. These results would immediately highlight the difficulties with this
arithmetic.

7. CONCLUSION

In this paper, we review more than 300 studies on fuzzy differential equations and
compare different solution concepts. Most of these studies are devoted to developing a
new fuzzy derivative and applying this derivative to solve differential equations. In this
regard, we discuss the pros and cons of existing derivative concepts. Although a sufficient
number of different derivative concepts have been proposed, they have not brought the
expected progress in solving fuzzy differential equations. Our view on this issue is as
follows. The derivative is defined through the subtraction operation. This operation is
expected to be, first, the inverse of addition, and, second, to be defined for each pair of
numbers. Everywhere in fuzzy arithmetic, Minkowski addition is used. If the subtraction
operation is defined as the inverse of this addition, we have the Hukuhara difference.
However, the Hukuhara difference is not defined for each pair of fuzzy numbers. And
if any other subtraction is used, it will not be the inverse of addition. Thus, it is
impossible to create an arithmetic, and consequently a calculus, that would have the
same properties as in the case of real numbers. To summarize the above, we believe that
unless a new addition operation is defined that can replace Minkowski’s addition, the
new derivative concepts that will be proposed will not be able to overcome the existing
shortcomings of fuzzy calculus. Based on this, we believe that further developments in
the theory of fuzzy differential equations will be associated with alternative approaches
that do not use fuzzy derivatives.
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[174] E. Khodadadi, M. Karabacak, and E. Çelik: Numerical solutions of fuzzy linear fractional
differential equations with Laplace transforms under Caputo-type H-differentiability. J.
Math. 2025 (2025), 1, 9998269. DOI:10.1155/jom/9998269

[175] O.D. Kichmarenko and N.V. Skripnik: Averaging of fuzzy differential equations with
delay. Nonlinear Oscillations 11 (2008), 3, 331–344. DOI:10.1007/s11072-009-0034-z

[176] P. E. Kloeden: Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy
Sets Systems 44 (1991), 1, 161–163. DOI:10.1016/0165-0114(91)90041-N

[177] P. E. Kloeden and T. Lorenz: Fuzzy differential equations without fuzzy convexity.
Fuzzy Sets Systems 230 (2013) 65–81. DOI:10.1016/j.fss.2012.01.012

[178] T.A. Komleva, A.V. Plotnikov, and N.V. Skripnik: Differential equations with set-valued
solutions. Ukrainian Math. J. 60 (2008), 10, 1540–1556. DOI:10.1007/s11253-009-0150-z
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[250] M. Qayyum, A. Tahir, S. T. Saeed, S. Afzal, A. Akgül, and M.K. Hassani: Dual
solution of thin film flow of fuzzified MHD pseudo-plastic fluid: numerical investi-
gation in uncertain environment. Appl. Math. Sci. Engrg. 32 (2024), 1, 2421486.
DOI:10.1080/27690911.2024.2421486

[251] D. Qiu, R. Dong, C. Lu, and C. Mu: On the stability of solutions of fuzzy differential
equations in the quotient space of fuzzy numbers. J. Intell. Fuzzy Systems 31 (2016), 1,
45–54. DOI:10.3233/IFS-162115

[252] D. Qiu, W. Zhang, and C. Lu: On fuzzy differential equations in the quotient space of
fuzzy numbers. Fuzzy Sets Systems 295 (2016), 72–98. DOI:10.1016/j.fss.2015.03.010

[253] D. Qiu, C. Zhang, W. Zhang, and C. Mu: Basic theorems for fuzzy differential equations
in the quotient space of fuzzy numbers. Advances Difference Equations (2014) 1–22.
DOI:10.1186/1687-1847-2014-303

[254] F. Rabiei, F. Ismail, A. Ahmadian, and S. Salahshour: Numerical solution of second-
order fuzzy differential equation using improved Runge–Kutta Nystrom method. Math.
Problems Engrg. 2013 (2013), 1, 803462. DOI:10.1155/2013/803462

[255] F. Rabiei, F. Abd Hamid, M.M. Rashidi, and F. Ismail: Numerical simulation of fuzzy
differential equations using general linear method and B-series. Advances Mechanic.
Engrg. 9 (2017), 9, 1687814017715419. DOI:10.1177/1687814017715419

[256] N.A.A. Rahman and M.Z. Ahmad: Applications of the fuzzy Sumudu transform for
the solution of first order fuzzy differential equations. Entropy 17 (2015), 7, 4582–4601.
DOI:10.3390/e17074582

[257] W. Ren, Z. Yang, X. Sun, and M. Qi: Hyers–Ulam stability of Hermite fuzzy differential
equations and fuzzy Mellin transform. J. Intell. Fuzzy Systems 35 (2018), 3, 3721–3731.
DOI:10.3233/JIFS-18523
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