Kybernetika 61 no. 2, 221-237, 2025

Optimality conditions for an interval-valued vector problem

Ashish Kumar Prasad, Julie Khatri and Izhar AhmadDOI: 10.14736/kyb-2025-2-0221

Abstract:

The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush--Kuhn--Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak{F}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.

Keywords:

interval-valued vector optimization problem, LU-Pareto optimality, quasidifferentiable $\mathfrak {F}$-convexity,

Classification:

49J52, 90C26, 90C30, 90C29

References:

  1. T. Antczak: Optimality conditions in quasidifferentiable vector optimization. J. Optim. Theory Appl. 171 (2016), 708-725.   DOI:10.1007/s10957-016-0987-x
  2. T. Antczak: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150.   DOI:10.1016/S0252-9602(17)30062-0
  3. D. Bhatia and P. Jain: Generalized (F,$\rho$)-convexity and duality for nonsmooth multi-objective programs. Optimization 31 (1994), 239-244.   DOI:10.1080/02331939408844012
  4. A. K. Bhurjee and G. Panda: Efficient solution of interval optimization problem. Math. Methods Oper. Res. 76 (2012), 273-288.   DOI:10.1007/s00186-012-0399-0
  5. S. Bolintinéanu: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems. J. Optim. Theory Appl. 106 (2000), 265-296.   DOI:10.1023/A:1004695229456
  6. A. J. V. Brandao, M. A. Rojas-Medar and G. N. Silva: Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces. J. Optim. Theory Appl. 103 (1999), 65-73.   CrossRef
  7. V. Chankong and Y. Haimes: Multiobjective Decision Making: Theory and Methodology. North-Holland, New York 1983.   CrossRef
  8. A. Chinchuluun and P. M. Pardalos: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (2007), 29-50.   DOI:10.1007/s10479-007-0186-0
  9. F. H. Clarke: Optimization and Nonsmooth Analysis. Wiley, New York 1983.   CrossRef
  10. L. Coladas, Z. Li and S. Wang: Optimality conditions for multiobjective and nonsmooth minimization in abstract spaces. Bull. Austral. Math. Soc. 50 (1994), 205-218.   DOI:10.1017/S0004972700013678
  11. B. D. Craven: Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 (1989), 49-64.   CrossRef
  12. V. F. Demyanov and A. M. Rubinov: On quasidifferentiable functional. Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.)   CrossRef
  13. V. F. Demyanov and A. M. Rubinov: On some approaches to the non-smooth optimization problem. Ekonom. Matem. Metody 17 (1981), 1153-1174.   CrossRef
  14. B. El. Abdouni and L. Thibault: Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces. Optimization 26 (1992), 277-285.   DOI:10.1007/BF02629806
  15. K. Eppler and B. Luderer: The Lagrange principle and quasidifferential calculus. Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192.   CrossRef
  16. Y. Gao: Demyanov's difference of two sets and optimality conditions in Lagrange multiplier type for constrained quasidifferentiable optimization. J. Optim. Theory Appl. 104 (2000), 377-394.   DOI:10.1023/A:1004613814084
  17. Y. Gao: Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization. In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162.   CrossRef
  18. N. J. Huang, J. Li and S. Y. Wu: Optimality conditions for vector optimization problems. J. Optim. Theory Appl. 142 (2009), 323-342.   DOI:10.1007/s10957-009-9514-7
  19. A. Jayswal, I. M. Stancu-Minasian and I. Ahmad: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127.   DOI:10.1016/j.amc.2011.09.041
  20. V. Jeyakumar and X. Q. Yang: Convex composite multi-objective nonsmooth programming. Math. Program. 59 (1993), 325-343.   DOI:10.1007/BF01581251
  21. P. Kanniappan: Necessary conditions for optimality of nondifferentiable convex multiobjective programming. J. Optim. Theory Appl. 40 (1983), 167-174.   DOI:10.1007/BF00933935
  22. L. Kuntz and S. Scholtes: Constraint qualifications in quasidifferentiable optimization. Math. Program. 60 (1993), 339-347.   DOI:10.1080/11250009309355834
  23. D. T. Luc: Theory of Vector Optimization. Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989.   CrossRef
  24. B. Luderer and R. Rösiger: On Shapiro's results in quasidifferential calculus. Math. Program. 46 (1990), 403-407.   DOI:10.1007/BF01585754
  25. K. M. Miettinen: Nonlinear Multiobjective Optimization. International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004.   CrossRef
  26. M. Minami: Weak Pareto-optimal necessary conditions in nondifferentiable multiobjective program on a Banach space. J. Optim. Theory Appl. 41 (1983), 451-461.   DOI:10.1007/BF00935364
  27. L. N. Polyakova: On the minimization of a quasidifferentiable function subject to equality-type constraints. Math. Program. Studies 29 (1986), 44-55.   DOI:10.5179/benthos1981.1986.44
  28. A. Shapiro: On optimality conditions in quasidifferentiable optimization. SIAM Control Appl. 22 (1984), 610-617.   DOI:10.1137/0322037
  29. Y. Sun and L. Wang: Optimality conditions and duality in nondifferentiable interval-valued programming. J. Industr. Management Optim. 9 (2013), 131-142.   CrossRef
  30. A. Uderzo: Quasi-multipliers rules for quasidifferentiable extremum problems. Optimization 51 (2002), 761-795.   DOI10.1080/0233193021000015613
  31. S. Wang: Lagrange conditions in nonsmooth and multiobjective mathematical programming. Math. Econom. 1 (1984), 183-193.   CrossRef
  32. D. E. Ward: A constraint qualification in quasidifferentiable programming. Optimization 22 (1991), 661-668.   DOI:10.1080/02331939108843709
  33. H. C. Wu: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European J. Oper. Res. 176 (2007), 46-59.   DOI:10.1016/j.ejor.2005.09.007
  34. Z. Q. Xia, C. L. Song and L. W. Zhang: On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization. Int. J. Pure Appl. Math. 23 (2005), 299-310.   CrossRef
  35. J. Zhang, S. Liu, L. Li and Q. Feng: The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014), 607-631.   CrossRef
  36. H. C. Zhou and Y. J. Wang: Optimality condition and mixed duality for interval-valued optimization. In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323.   CrossRef