Kybernetika 61 no. 1, 133-140, 2025

Solvability of (max,+) and (min,+)-equation systems

Karel ZimmermannDOI: 10.14736/kyb-2025-1-0133

Abstract:

Properties of (max,+)-linear and (min,+)-linear equation systems are used to study solvability of the systems. Solvability conditions of the systems are investigated. Both one-sided and two-sided systems are studied. Solvability of one class of (max,+)-nonlinear problems will be investigated. Small numerical examples illustrate the theoretical results.

Keywords:

max-algebraic and min-algebraic linear equation systems, solvability conditions, two-sided max-/min- algebraic linear equation systems

Classification:

90C31, 15A99

References:

  1. P. Butkovič: Max-linear Systems: Theory and Algorithms. Monographs in Mathematics, Springer Verlag 2010.   CrossRef
  2. R. A. Cuninghame-Green: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems 166, Springer Verlag, Berlin 1979.   CrossRef
  3. G. L. Litvinov, V. P. Maslov and S. N. Sergeev (eds.): Idempotent and Tropical Mathematics and Problems of Mathematical Physics, vol. I. Independent University Moscow, 2007.   CrossRef
  4. N. N. Vorobjov: Extremal Algebra of Positive Matrices. (In Russian.) Datenverarbeitung und Kybernetik 3 (1967), 39-71.   CrossRef
  5. H. Myšková and J. Plávka: The robustness of interval matrices in max-plus algebra. Linear Algebra Appl. 445 (2014), 85-102.   DOI:10.1016/j.laa.2013.12.008
  6. N. K. Krivulin: On the Solution of the two-sided vector equation. In: Tropical Algebra, Vestnik, St. Petersburg University, Mathematics 56 (2023) 2, 236-248.   DOI:10.21638/spbu01.2023.205
  7. R. A. Cunninghame-Green and K. Zimmermann: Equation with residual functions. CMUC 42 (2001), 729-740.   DOI:10.1046/j.1365-2958.2001.02638.x
  8. A. Aminu: On the solvability of homogeneous two-sided systems in max-algebra. Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132 Volume 16, 2010, Number 2, pp. 5-15.   CrossRef