Kybernetika 60 no. 6, 723-739, 2024

Characterization of the order induced by uninorm with the underlying drastic product or drastic sum

Zhi-qiang LiuDOI: 10.14736/kyb-2024-6-0723

Abstract:

In this article, we investigate the algebraic structures of the partial orders induced by uninorms on a bounded lattice. For a class of uninorms with the underlying drastic product or drastic sum, we first present some conditions making a bounded lattice also a lattice with respect to the order induced by such uninorms. And then we completely characterize the distributivity of the lattices obtained.

Keywords:

uninorm, triangular norm, partial order, divisibility, distributive lattice

Classification:

03B20, 06B05, 94D05

References:

  1. E. Aşıcı and F. Karaçal: On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333.   DOI:10.1016/j.ins.2014.01.032
  2. E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.   DOI:10.1016/j.fss.2016.12.004
  3. E. Aşıcı: On the properties of the $F$-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84.   DOI:10.1016/j.fss.2017.11.008
  4. G. Birkhoff: Lattice Theory, 3rd edition. Colloquium Publishers, American Mathematical Society, 1967.   CrossRef
  5. T. Calvo, B. De Baets and J. Fodor: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.   DOI:10.1016/S0165-0114(99)00125-6
  6. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  7. Q. H. Duan and B. Zhao: Maximal chains on the interval $[0,1]$ with respect to t-norm-partial orders and uninorm-partial orders. Inform. Sci. 516 (2020), 419-428.   DOI:10.1016/j.ins.2019.12.073
  8. D. Dubois and H. Prade: Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, Boston 2000.   CrossRef
  9. Ü. Ertuğrul M N. Kesicioğlu and F. Karaçal: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.   DOI:10.1016/j.ins.2015.10.019
  10. V. K. Gupta and B. Jayaram: Importation lattices. Fuzzy Sets Syst. 405 (2021), 1-17.   DOI:10.1016/j.fss.2020.04.003
  11. V. K. Gupta and B. Jayaram: Order based on associative operations. Inform. Sci. 566 (2021), 326-346.   DOI:10.1016/j.ins.2021.02.020
  12. V. K. Gupta and B. Jayaram: Clifford's order obtained from uninorms on bounded lattices. Fuzzy Sets Syst. 462 (2023), 108384.   DOI:10.1016/j.fss.2022.08.016
  13. F. Karaçal and M. N. Kesicioğlu: A $T$-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.   DOI:10.1159/000337863
  14. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  15. M. N. Kesicioğlu: Some notes on the partial orders induced by a uninorm and a nullnorm in a bounded lattice. Fuzzy Sets Syst. 346 (2018), 55-71.   DOI:10.1016/j.fss.2017.08.010
  16. M. N. Kesicioğlu, F. Karaçal and R. Mesiar: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.   DOI:10.1016/j.fss.2014.10.006
  17. M. N. Kesicioğlu, Ü. Ertuğrul and F. Karaçal: An equivalence relation based on the $U$-partial order. Inform. Sci. 411 (2017), 39-51.   DOI:10.1016/j.ins.2017.05.020
  18. M. N. Kesicioğlu, Ü. Ertuğrul and F. Karaçal: Some notes on $U$-partial order. Kybernetika 55 (2019), 518-530.   DOI:10.14736/kyb-2019-3-0518
  19. M. N. Kesicioğlu: On the relationships between the orders induced by uninorms and nullnorms. Fuzzy Sets Syst. 378 (2020), 23-43.   DOI:10.1016/j.fss.2018.12.020
  20. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Springer Netherlands, 2000.   CrossRef
  21. G. Li, H. W. Liu and Y. Su: On the conditional distributivity of nullnorms over uninorms. Inform. Sci. 317 (2015), 157-169.   DOI:10.1016/j.ins.2015.04.040
  22. W. H. Li and F. Qin: Conditional distributivity equation for uninorms with continuous underlying operators. IEEE Trans. Fuzzy Syst. 28 (2020), 1664-1678.   DOI:10.1109/TFUZZ.2019.2920809
  23. Z. Q. Liu: New R-implication generated by $T$-partial order. Comp. Appl. Math. 43 (2024), 425.   DOI:10.1007/s40314-024-02939-5
  24. Z. Q. Liu: Clifford's order based on non-commutative operations. Iran. J. Fuzzy syst. 21(3) (2024), 77-90.   DOI:10.22111/IJFS.2024.47502.8363
  25. G. Mayor and J. Torrens: On a class of operators for expert systems. Int. J. Intell. Syst. 8 (1993), 771-778.   DOI:10.1002/int.4550080703
  26. A. Mesiarová-Zemánková: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction. Int. J. Approx. Reason. 83 (2017), 176-192.   DOI:10.1016/j.ijar.2017.01.007
  27. A. Mesiarová-Zemánková: Natural partial order induced by a commutative, associative and idempotent function. Inform. Sci. 545 (2021), 499-512.   DOI:10.1016/j.ins.2020.09.028
  28. A. Mesiarová-Zemánková: Representation of non-commutative, idempotent, associative functions by pair-orders. Fuzzy Sets Syst. 475 (2023), 108759.   DOI:10.1016/j.fss.2023.108759
  29. K. Nanavati and B. Jayaram: Order from non-associative operations. Fuzzy Sets Syst. 467 (2023), 108484.   DOI:10.1016/j.fss.2023.02.005
  30. B. Saminger: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.   DOI:10.1016/j.fss.2005.12.021
  31. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  32. R. R. Yager: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122 (2001), 167-175.   DOI:10.1016/S0165-0114(00)00027-0