Kybernetika 60 no. 4, 475-491, 2024

Non-fragile observers design for nonlinear systems with unknown Lipschitz constant

Fan Zhou, Yanjun Shen and Zebin WuDOI: 10.14736/kyb-2024-4-0475

Abstract:

In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer errors are proven to converge to the origin based on Lyapunov stability theorem and a matrix inequality. Finally, an experimental simulation is provided to confirm the validity of the proposed method.

Keywords:

observer, non-fragile, output filter, high gain, unknown Lipschitz constant

Classification:

93C10

References:

  1. U. Al-Saggaf, M. Bettayeb and S. Djennoune: Fixed-time synchronization of memristor chaotic systems via a new extended high-gain observer. European J. Control 63 (2022), 1, 164-174.   DOI:10.1016/j.ejcon.2021.10.002
  2. C. Andreu and C. Ramon: Addressing the relative degree restriction in nonlinear adaptive observers: A high-gain observer approach. J. Franklin Inst. 359 (2022), 8, 3857-3882.   DOI:10.1016/j.jfranklin.2022.03.020
  3. D. Astolfi, L. Zaccarian and M. Jungers: On the use of low-pass filters in high-gain observers. Systems Control Lett. 148 (2021), 104856.   DOI:10.1016/j.sysconle.2020.104856
  4. M. Chen and C. Chen: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans. Automat. Control 52 (2007), 12, 2365-2369.   DOI:10.1109/TAC.2007.910724
  5. H. Chen and Y. Li: Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities. Proc. Amer. Math. Soc. 135 (2007), 12, 1-7.   CrossRef
  6. C. Chen, C. Qian, Z. Sun and Y. Liang: Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity. IEEE Trans. Automat. Control 63 (2018), 7, 2212-2217.   DOI:10.1109/TAC.2017.2759274
  7. W. Chen, H. Sun and X. Lu: A variable gain impulsive observer for Lipschitz nonlinear systems with measurement noises. J. Franklin inst. 350 (2022), 18, 11186-11207.   CrossRef
  8. D. Chowdhury, Y. K. Al-Nadawi and X. Tan: Dynamic inversion-based hysteresis compensation using extended high-gain observer. Automatica 135 (2022), 109977.   DOI:10.1016/j.automatica.2021.109977
  9. G. Duan: High-order system approaches: III. observability and observer design. ACTA Automat. Sinica 46 (2020), 9, 1885-1895.   CrossRef
  10. L. Dutta and D. Das: Nonlinear disturbance observer based multiple‐model adaptive explicit model predictive control for nonlinear {MIMO} system. Int. J. Robust Nonlinear Control 33 (2023), 11, 5934-5955.   DOI:10.1002/rnc.6680
  11. X. Guo and G. Yang: Non-fragile H$\infty$ filter design for delta operator formulated systems with circular region pole constraints: an {LMI} optimization approach. ACTA Automatica Sinica 35 (2009), 9, 1209-1215.   DOI:10.1016/S1874-1029(08)60106-8
  12. C. Hua and X. Guan: Synchronization of chaotic systems based on PI observer design. Physics Lett. A 334 (2005), 5-6, 382-389.   DOI:10.1016/j.physleta.2004.11.050
  13. J. Huang and Z. Han: Adaptive non-fragile observer design for the uncertain {L}ur'e differential inclusion system. Appl. Math. Modell. 37 (2013), 1-2, 72-81.   CrossRef
  14. C. S. Jeong, E. E. Yaz and Y. I. Yaz: Resilient design of discrete-time observers with general criteria using LMIs. Math. Computer Modell. 42 (2005), 9-10, 931-938.   DOI:10.1016/j.mcm.2005.06.004
  15. H. Jian. H. Zhang, Y. Wang and X. Liu: Adaptive state disturbance observer design for nonlinear system with unknown lipschitz constant. Chinese Automation Congress 2015, pp. 880-885.   CrossRef
  16. M. Koo and H. Choi: State feedback regulation of high-order feedforward nonlinear systems with delays in the state and input under measurement sensitivity. Int. J. Systems Sci. 52 (2021), 10, 2034-2047.   DOI10.1080/00207721.2021.1876275
  17. S. Lakshmanan and Y. Joo: Decentralized observer-based integral sliding mode control design of large-scale interconnected systems and its application to doubly fed induction generator-based wind farm model. Int. J. Robust Nonlinear Control 33 (2023), 10, 5758-5774.   DOI:10.1002/rnc.6673
  18. G. Li, D. Xu and abd S. Zhou: A parameter-modulated method for chaotic digital communication based on state observers. ATAC Physica Sinica 53 (2004), 3, 706-709.   DOI:10.1295/kobunshi.53.709
  19. W. Li, X. Yao and M. Krstic: Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica 120 (2020), 109112.   DOI:10.1016/j.automatica.2020.109112
  20. Z. Lin: Co-design of linear low-and-high gain feedback and high gain observer for suppression of effects of peaking on semi-global stabilization. Automatica 137 (2022), 110124.   DOI:10.1016/j.automatica.2021.110124
  21. L. Lin and Y. Shen: Adaptive anti-measurement-disturbance stabilization for a class of nonlinear systems via output feedback. J. Control Theory Appl. 2021.   DOI:10.7641/CTA.2022.10773
  22. Y. Liu and S. Fei: Chaos synchronization between the {S}prott-{B} and {S}prott-{C} with linear coupling. ATAC Physica Sinica 53 (2006), 3, 1035-1039.   CrossRef
  23. C. Liu, K. Liao, K. Qian, Y. Li and Q. Ding: The robust sliding mode observer design for nonlinear system with measurement noise and multiple faults. Systems Engrg. Electron. (2022).   CrossRef
  24. R. Marino and P. Tomei: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall, Hertfordshire 1995.   CrossRef
  25. W. Perruquetti, T. Floquet and E. Moulay: Finite-time observers: application to secure communication. IEEE Trans. Automat. Control 53 (2008), 1, 356-360.   DOI:10.1109/TAC.2007.914264
  26. Y. Shen and X. Xia: Semi-global finite-time observers for nonlinear systems. Automatica 44 (2008), 12, 3152-3156.   DOI:10.1016/j.automatica.2008.05.015
  27. F. E. Thau: Observing the state of nonlinear dynamic systems. Int. J. Control 17 (1973), 3, 471-479.   DOI:10.1080/00207177308932395
  28. Z. Xiang, R. Wang and B. Jiang: Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Systems Signal Process. 30 (2011), 1, 73-87.   DOI:10.1007/s00034-010-9210-8
  29. G. Yang and J. Wang: Robust nonfragile kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Trans. Automat. Control 46 (2001), 2, 343-348.   DOI:10.1109/9.905707
  30. Q. Zheng, S. Xu and Z. Zhang: Nonfragile {H}-infinity observer design for uncertain nonlinear switched systems with quantization. Appl. Math. Comput. 386 (2020), 125435.   DOI:10.1016/j.amc.2020.125435