Kybernetika 60 no. 3, 379-393, 2024

Some results on the weak dominance relation between ordered weighted averaging operators and T-norms

Gang Li, Zhenbo Li and Jing WangDOI: 10.14736/kyb-2024-3-0379

Abstract:

Aggregation operators have the important application in any fields where the fusion of information is processed. The dominance relation between two aggregation operators is linked to the fusion of fuzzy relations, indistinguishability operators and so on. In this paper, we deal with the weak dominance relation between two aggregation operators which is closely related with the dominance relation. Weak domination of isomorphic aggregation operators and ordinal sum of conjunctors is presented. More attention is paid to the weak dominance relation between ordered weighted averaging operators and {\L}ukasiewicz t-norm. Furthermore, the relationships between weak dominance and some functional inequalities of aggregation operators are discussed.

Keywords:

domination, t-norm, ordinal sum, OWA operators

Classification:

06F05, 03E72, 03B52

References:

  1. C. Alsina, B. Schweizer and M. J. Frank: Associative Functions: Triangular Norms and Copulas. World Scientific, 2006.   CrossRef
  2. C. Alsina and E. Trillas: On almost distributive Łukasiewicz triplets. Fuzzy Sets Syst. 50 (1992), 175-178.   DOI:10.1016/0165-0114(92)90215-P
  3. L. Běhounek, U. Bodenhofer, P. Cintula, S. Saminger-Platz and P. Sarkoci: Graded dominance and related graded properties of fuzzy conncectives. Fuzzy Sets Syst. 262 (2015), 78-101.   DOI:10.1016/j.fss.2014.04.025
  4. U. Bentkowska and et al.: Dominance of Binary Operations on Posets. Springer, Cham (2018).   DOI:10.1007/978-3-319-65545-1-14
  5. C. Bejines, S. Ardanza-Trevijano, M. J. Chasco and J. Elorza: Aggregation of indistinguishability operators. Fuzzy Sets Syst. 446 (2022), 53-67.   DOI:10.1016/j.fss.2021.04.023
  6. Q. Bo and G. Li: The submodular inequality of aggregation operators. Symmetry 14 (2022), 2354.   DOI:10.3390/sym14112354
  7. G. Beliakov, H. S. Bustince and T. C. Sanchez: A practical guide to averaging functions. Stud. Fuzziness Soft Comput. 329, Springer, Berlin, Heidelberg 2016.   CrossRef
  8. H. Bustince, J. Montero and R. Mesiar: Migrativity of aggregation functions. Fuzzy Sets Syst. 160 (2009), 766-777.   DOI:10.1016/j.fss.2008.09.018
  9. T. Calvo: On some solutions of the distributivity equation. Fuzzy Sets Syst. 104 (1999), 85-96.   DOI:10.1016/S0165-0114(98)00261-9
  10. M. Carbonell, M. Mas, J. Suñer and J. Torrens: On distributivity and modularity in De Morgan triplets. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 4 (1996), 351-368.   CrossRef
  11. B. V. De Walle, B. De Baets and E. Kerre: A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures. (I). General argumentation. Fuzzy Sets Syst. 97 (1998), 349-359.   DOI:10.1016/S0165-0114(96)00327-2
  12. B. V. De Walle, B. De Baets and E. Kerre: A plea for the use of Łukasiewicz triplets in the definition of fuzzy preference structures. (II). The identity case. Fuzzy Sets Syst. 99 (1998), 303-310.   DOI:10.1016/S0165-0114(96)00396-X
  13. S. Díaz, S. Montes and B. De Baets: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Syst. 15 (2007), 275-286.   DOI:10.1109/TFUZZ.2006.880004
  14. J. Drewniak and E. Rak: Subdistributivity and superdistributivity of binary operations. Fuzzy Sets Syst. 161 (2010), 189-201.   DOI:10.1016/j.fss.2009.08.010
  15. J. Drewniak and E. Rak: Distributivity inequalities of monotonic operations. Fuzzy Sets Syst. 191 (2012), 62-71.   DOI:10.1016/j.fss.2011.09.012
  16. F. Durante and R. G. Ricci: Supermigrative semi-copulas and triangular norms. Inform. Sci. 179 (2009), 2389-2694.   CrossRef
  17. F. Durante and R. G. Ricci: Supermigrativity of aggregation functions. Fuzzy Sets Syst. 335 (2018), 55-66.   DOI:10.1016/j.fss.2017.05.015
  18. W. Fechner, E. Rak and L. Zedam: The modularity law in some classes of aggregation operators. Fuzzy Sets Syst. 332 (2018), 56-73.   DOI:10.1016/j.fss.2017.03.010
  19. J. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994.   CrossRef
  20. M. Grabisch, J. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, Cambridge 2009.   CrossRef
  21. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  22. G. Li, L. Zhang, J. Wang and Z. Li: Some results on the weak dominance between t-norms and t-conorms. Fuzzy Sets Syst. 467 (2023), 108487.   DOI:10.1016/j.fss.2023.02.008
  23. R. Mesiar and S. Saminger: Domination of ordered weighted averaging operators over t-norms. Soft Computing 8 (2004), 562-570.   DOI:10.1007/s00500-003-0315-x
  24. B. Nagy, R. Basbous and T. Tajti: Lazy evaluations in Łukasiewicz type fuzzy logic. Fuzzy Sets Syst. 376 (2019), 127-151.   DOI10.1016/j.fss.2018.11.014
  25. H. T. Nguyen, C. L. Walker and E. A. Walker: A first Course in Fuzzy Logic. Taylor and Francis, CRC Press, 2019.   CrossRef
  26. S. Saminger, R. Mesiar and U. Bodenhofer: Domination of aggregation operators and preservation of transitivity. Int. J. Uncert. Fuzziness Knowledge-Based Syst. 10 (2002), 11-35.   DOI:10.1142/S0218488502001806
  27. S. Saminger, B. De Baets and H. De Meyer: On the dominance relation between ordinal sums of conjunctors. Kybernetika 42 (2006), 337-350.   CrossRef
  28. S. Saminger: The dominance relation in some families of continuous Archimedean t-norms and copulas. Fuzzy Sets Syst. 160 (2009), 2017-2031.   DOI:10.1016/j.fss.2008.12.009
  29. P. Sarkoci: Domination in the families of Frank and Hamacher t-norms. Kybernetika 41 (2005), 349-360.   CrossRef
  30. P. Sarkoci: Dominance is not transitive on continuous triangular norms. Aequat. Math. 75 (2008), 201-207.   DOI:10.1007/s00010-007-2915-5
  31. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York 1983.   CrossRef
  32. Y. Su, J. V. Riera, D. Ruiz-Aguilera and J. Torrens: The modularity condition for uninorms revisted. Fuzzy Sets Syst. 357 (2019), 27-46.   DOI:10.1016/j.fss.2018.02.008
  33. R. M. Tardiff: On a functional inequality arising in the construction of the product of several metric spaces. Aequat. Math. 20 (1980), 51-58.   DOI:10.1007/BF02190493
  34. R. R. Yager: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Systems Man Cybernet. 18 (1988), 183-190.   DOI:10.1109/21.87068
  35. X. P. Yang: Resolution of bipolar fuzzy relation equations with max-Łukasiewicz composition. Fuzzy Sets Syst. 397 (2020), 41-60.   DOI:10.1016/j.fss.2019.08.005