In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.
effect algebra, state of effect algebra
81P10, 81P15