MATRIX REPRESENTATION OF FINITE EFFECT ALGEBRAS

Grzegorz Bińczak, Joanna Kaleta and Andrzej Zembrzuski

In this paper we present representation of finite effect algebras by matrices. For each nontrivial finite effect algebra E we construct set of matrices $M(E)$ in such a way that effect algebras E_{1} and E_{2} are isomorphic if and only if $M\left(E_{1}\right)=M\left(E_{2}\right)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8 .

Keywords: effect algebra, state of effect algebra
Classification: $81 \mathrm{P} 10,81 \mathrm{P} 15$

1. INTRODUCTION

Effect algebras have been introduced by Foulis and Bennet in 1994 (see [4]) for the study of foundations of quantum mechanics (see [3]). Independently, Chovanec and Kôpka introduced an essentially equivalent structure called D-poset (see [8]). Another equivalent structure was introduced by Giuntini and Greuling in 5.

The most important example of an effect algebra is $(E(H), 0, I, \oplus)$, where H is a Hilbert space and $E(H)$ consists of all self-adjoint operators A on H such that $0 \leq A \leq I$. For $A, B \in E(H), A \oplus B$ is defined if and only if $A+B \leq I$ and then $A \oplus B=A+B$. Elements of $E(H)$ are called effects and they play an important role in the theory of quantum measurements (1,2$]$).

A quantum effect may be treated as two-valued (it means 0 or 1) quantum measurement that may be unsharp (fuzzy). If there exist some pairs of effects a, b which posses an orthosum $a \oplus b$ then this orthosum correspond to a parallel measurement of two effects.

In this paper to each finite effect algebra we assign (see 3.1) a set of matrices $M(E)$ in such a way that effect algebras E_{1} and E_{2} are isomorphic if and only if $M\left(E_{1}\right)=M\left(E_{2}\right)$. We also present the list of matrices representing all nontrivial finite effect algebras of cardinality at most 8 . Using this list it is easy to check that every effect algebras of cardinality ≤ 8 has a state. So the 9 -element Riečanová's example of effect algebra without a state is smallest.

Let us start with the following definition of an effect algebra.
DOI: 10.14736/kyb-2023-5-0737

Definition 1.1. In 4 an effect algebra is defined to be an algebraic system $(E, 0,1, \oplus)$ consisting of a set E, two special elements $0,1 \in E$ called the zero and the unit, and a partially defined binary operation \oplus on E that satisfies the following conditions for all $p, q, r \in E$:

1. [Commutative Law] If $p \oplus q$ is defined, then $q \oplus p$ is defined and $p \oplus q=q \oplus p$.
2. [Associative Law] If $q \oplus r$ is defined and $p \oplus(q \oplus r)$ is defined, then $p \oplus q$ is defined, $(p \oplus q) \oplus r$ is defined, and $p \oplus(q \oplus r)=(p \oplus q) \oplus r$.
3. [Orthosupplementation Law] For every $p \in E$ there exists a unique $q \in E$ such that $p \oplus q$ is defined and $p \oplus q=1$.
4. [Zero-unit Law] If $1 \oplus p$ is defined, then $p=0$.

For simplicity, we often refer to E, rather than to $(E, 0,1, \oplus)$, as being an effect algebra. If $p, q \in E$, we say that p and q are orthogonal and write $p \perp q$ iff $p \oplus q$ is defined in E. If $p, q \in E$ and $p \oplus q=1$, we call q the orthosupplement of p and write $p^{\prime}=q$.

Definition 1.2. For effect algebras E_{1}, E_{2} a mapping $\phi: E_{1} \rightarrow E_{2}$ is said to be an isomorphism if ϕ is a bijection, $a \perp b \Longleftrightarrow \phi(a) \perp \phi(b), \phi(1)=1$ and $\phi(a \oplus b)=$ $\phi(a) \oplus \phi(b)$.

It is shown in [4 that the relation \leq defined for $p, q \in E$ by $p \leq q$ iff $\exists r \in E$ with $p \oplus r=q$ is a partial order on E and $0 \leq p \leq 1$ holds for all $p \in E$. It is also shown that the mapping $p \mapsto p^{\prime}$ is an order-reversing involution and that $q \perp p$ iff $q \leq p^{\prime}$. Furtheremore, E satisfies the following cancellation law: If $p \oplus q \leq r \oplus q$, then $p \leq r$.

For $n \in \mathbb{N}$ and $x \in E$ let $n x=x \oplus x \oplus \cdots \oplus x$ (n-times). We write $\operatorname{ord}(x)=n \in \mathbb{N}$ if n is the greatest integer such that $n x$ exists in E, if no such n exists, then $\operatorname{ord}(x)=\infty$.

An atom of an effect algebra E is a minimal element of $E \backslash\{0\}$. An effect algebra E is atomic if for every non-zero element $x \in E$ there exists an atom $a \in E$ such that $a \leq x$. An effect algebra E is non-trivial if $|E|>1$.

We say that a finite system $F=\left(x_{k}\right)_{k=1}^{n}$ of not necessarily different elements of an effect algebra E is orthogonal if $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}$ (written $\bigoplus_{k=1}^{n} x_{k}, \bigoplus\left\{x_{k} \mid k \in\right.$ $\{1,2, \ldots, n\}\}$ or $\bigoplus F)$ exists in E. Here we define $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}=\left(x_{1} \oplus x_{2} \oplus\right.$ $\left.\cdots \oplus x_{n-1}\right) \oplus x_{n}$ supposing that $\bigoplus_{k=1}^{n-1} x_{k}$ is defined and $\bigoplus_{k=1}^{n-1} x_{k} \leq x_{n}^{\prime}$. We also define $\bigoplus \emptyset=0$. An arbitrary system $G=\left(x_{k}\right)_{k \in H}$ of not necessarily different elements of E is called orthogonal if $\bigoplus K$ exists for every finite $K \subseteq G$. We say that for an orthogonal system $G=\left(x_{k}\right)_{k \in H}$ the element $\bigoplus G$ exists if and only if $\vee\{\bigoplus K \mid K \subseteq G, K$ finite $\}$ exists in E and then we put $\bigoplus G=\vee\{\bigoplus K \mid K \subseteq G, K$ finite $\}$. We call an effect algebra E orthocomplete if every orthogonal system $G=\left(s_{k}\right)_{k \in H}$ of elements of E has the sum $\bigoplus G$.

Proposition 1.3. (Wei Ji [11, Proposition 3.1]) Let E be an orthocomplete atomic effect algebra. Then for every $x \in E$, there is a set $\left\{a_{i} \mid i \in I\right\}$ of mutually different atoms in E and a set $\left\{k_{i} \mid i \in I\right\}$ of positive integers such that $x=\bigoplus\left\{k_{i} a_{i} \mid i \in I\right\}$.

Let E be a finite effect algebra. Then A is orthocomplete and atomic. If $|E|>1$ and E has atoms $a_{1}, \ldots a_{m}$ then by Proposition 1.3 for every $x \in E$ there exist non-negative integers k_{1}, \ldots, k_{m} such that $x=\bigoplus_{i=1}^{m} k_{i} a_{i}$.

2. E-TEST SPACES

In 77 Gudder introduced (algebraic) E-test spaces:
Definition 2.1. Let X be a nonempty set and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Let $f, g \in \mathbb{N}_{0}^{X}$. We define

- $f \leq g$ if $f(x) \leq g(x)$ for all $x \in X$,
- $f+g \in \mathbb{N}_{0}^{X}$ by $(f+g)(x)=f(x)+g(x)$,
- $g-f \in \mathbb{N}_{0}^{X}$ by $(g-f)(x)=g(x)-f(x)$ if $f \leq g$,
- $\mathbf{0} \in \mathbb{N}_{0}^{X}$ by $\mathbf{0}(x)=0$ for all $x \in X$.

A pair (X, \mathcal{T}) is an E-test space if and only if $\mathcal{T} \subseteq \mathbb{N}_{0}^{X}$ and the following conditions hold:

1. For any $x \in X$ there exists a $t \in \mathcal{T}$ such that $t(x) \neq 0$.
2. If $s, t \in \mathcal{T}$ with $s \leq t$, then $s=t$.

The elements of \mathcal{T} are called tests of (X, \mathcal{T}).
Definition 2.2. Let (X, \mathcal{T}) be an E-test space. Let $\mathcal{E}(X, \mathcal{T})=\left\{f \in \mathbb{N}_{0}^{X}: f \leq t\right.$ for some $t \in \mathcal{T}\}$. The elements of $\mathcal{E}(X, \mathcal{T})$ are called events of (X, \mathcal{T}). Let $f, g, h \in \mathcal{E}(X, \mathcal{T})$ then we say that f, g are

1. orthogonal $(f \perp g)$ if $f+g \in \mathcal{E}(X, \mathcal{T})$,
2. local complements of each other $(f \operatorname{loc} g)$ if $f+g \in \mathcal{T}$,
3. perspective with axis $h\left(f \approx_{h} g\right)$ if $f+h \in \mathcal{T}$ and $g+h \in \mathcal{T}$,
4. perspective $(f \approx g)$ if there exists $h \in \mathcal{E}(X, \mathcal{T})$ such that $f \approx_{h} g$.

We say that (X, \mathcal{T}) is algebraic if for $f, g, h \in \mathcal{E}(X, \mathcal{T}), f \approx g$ and $h \perp f$ imply that $h \perp g$.

Lemma 2.3. (Gudder [7, Lemma 3.1])
(a) An E-test space (X, \mathcal{T}) is algebraic if and only if for $f, g, h \in \mathcal{E}(X, \mathcal{T}), f \approx g$ and h loc f imply h loc g.
(b) If (X, \mathcal{T}) is algebraic, then \approx is an equivalence relation on $\mathcal{E}(X, \mathcal{T})$.

Let (X, \mathcal{T}) be an algebraic E-test space. By Lemma 2.3 perspectivity in an algebraic E-test space is transitive, hence it is an equivalence.

If $f \in \mathcal{E}(X, \mathcal{T})$, we define $\pi(f)=\{g \in \mathcal{E}(X, \mathcal{T}): g \approx f\}$. The equivalence class $\pi(f)$ is called the perspectivity class of f. Let

$$
\Pi=\Pi(X)=\{\pi(f): f \in \mathcal{E}(X, \mathcal{T})\}
$$

Theorem 2.4. (Gudder [7, Theorem 3.2]) If (X, \mathcal{T}) is an algebraic E-test space, then $\Pi(X)$ can be organized into an effect algebra.

We explain how the $\Pi(X)$ is organized into an effect algebra:

1. We define $0,1 \in \Pi$ by $0=\pi(\mathbf{0})=\{\mathbf{0}\}$ and $1=\pi(t)$ for any $t \in \mathcal{T}$.
2. For every $f \in \mathcal{E}(X, \mathcal{T})$ we define $\pi(f)^{\prime}=\pi(g)$ if g loc f (such g exists since there exists $t \in \mathcal{T}$ such that $f \leq t$ and then $t-f \in \mathcal{E}(X, \mathcal{T})$ and $(t-f)$ loc $f)$.
3. If $f, g \in \mathcal{E}(X, \mathcal{T})$ we define $\pi(f) \oplus \pi(g)=\pi(f+g)$ when $f \perp g$.

The following Lemma shows how algebraicity of an E-test space can be checked using only tests.

Lemma 2.5. Let (X, \mathcal{T}) be an E-test space. Then (X, \mathcal{T}) is algebraic if and only if for every tests $t_{1}, t_{2}, t_{3} \in \mathcal{T}$ if $t_{1}+t_{2} \geq t_{3}$ then $t_{1}+t_{2}-t_{3} \in \mathcal{T}$.

Proof. Let (X, \mathcal{T}) be an E-test space.
Assume that for every tests $t_{1}, t_{2}, t_{3} \in \mathcal{T}$ if $t_{1}+t_{2} \geq t_{3}$ then $t_{1}+t_{2}-t_{3} \in \mathcal{T}$.
We show that (X, \mathcal{T}) is algebraic using Lemma 2.3 Let $f, g, h \in \mathcal{E}(X, \mathcal{T}), f \approx g$ and $h \operatorname{loc} f$. Then there exists $d \in \mathcal{E}(X, \mathcal{T})$ such that $f+d, g+d \in \mathcal{T}$ and $h+f \in \mathcal{T}$. Hence $(g+d)+(h+f) \geq f+d$, which implies

$$
(g+d)+(h+f)-(f+d)=h+g \in \mathcal{T}
$$

It follows that h loc g so (X, \mathcal{T}) is algebraic.
Now assume that (X, \mathcal{T}) is algebraic. Let $t_{1}, t_{2}, t_{3} \in \mathcal{T}$ and $t_{1}+t_{2} \geq t_{3}$. Let $f \in \mathbb{N}_{0}^{X}$ be a function such that $f(x)=\min \left(t_{1}(x), t_{3}(x)\right)$ for all $x \in X$. Then $f \in \mathcal{E}(X, \mathcal{T})$ since $f \leq t_{1}$. Let $g=f+t_{2}-t_{3}$. We know that $t_{3}-t_{2} \leq t_{1}$ and $t_{3}-t_{2} \leq t_{3}$ so $t_{3}-t_{2} \leq \min \left(t_{1}, t_{3}\right)=f$ hence $g=f+t_{2}-t_{3} \geq 0$. Moreover $g=f+t_{2}-t_{3} \leq t_{2}$ since $f \leq t_{3}$. Therefore $g \in \mathcal{E}(X, \mathcal{T})$. Let $h=t_{1}-f$. Then $h \in \mathcal{E}(X, \mathcal{T})$ since $h \geq 0$ and $h \leq t_{1}$.

Let us observe that $f \approx g$ since $f+\left(t_{3}-f\right)=t_{3} \in \mathcal{T}$ and $g+\left(t_{3}-f\right)=f+t_{2}-$ $t_{3}+t_{3}-f=t_{2} \in \mathcal{T}$. Moreover $h+f=t_{1}-f+f=t_{1} \in \mathcal{T}$ so h loc f. By Lemma 2.3 we have h loc g thus $h+g=\left(t_{1}-f\right)+\left(f+t_{2}-t_{3}\right)=t_{1}+t_{2}-t_{3} \in \mathcal{T}$.

Complexity of checking if an E-test space is algebraic using Lemma 2.5 is smaller than using the Definition 2.2 since there is more events than tests.

3. MAIN THEOREM

By $M_{n \times m}\left(\mathbb{N}_{0}\right)$ we denote the set of all $n \times m$ matrices whose entries are elements of \mathbb{N}_{0}, i. e., natural numbers including 0 .

Definition 3.1. Let E be a non-trivial finite effect algebra with atoms a_{1}, \ldots, a_{m} $\left(a_{i} \neq a_{j}\right.$ for $\left.i \neq j\right)$ and $a=\left(a_{1}, \ldots, a_{m}\right)$. Then define $\operatorname{Seq}_{a}(E)=\left\{\left(x_{1}, \ldots, x_{m}\right) \in\right.$ $\left.\mathbb{N}_{0}^{m}: \bigoplus_{t=1}^{m} x_{t} a_{t}=1\right\}$. Let $n=\operatorname{card}\left(\operatorname{Seq}_{a}(E)\right)$ and

$$
\begin{aligned}
M(E)= & \left\{\left[y_{i j}\right] \in M_{n \times m}\left(\mathbb{N}_{0}\right): \underset{1 \leq i<j \leq n}{\forall} \underset{1 \leq t \leq m}{\exists} y_{i t} \neq y_{j t},\right. \\
& \left\{\left(y_{i 1}, \ldots, y_{i m}\right) \in \mathbb{N}_{0}^{m}: 1 \leq i \leq n\right\}=\operatorname{Se} q_{\left(a_{\sigma(1)}, \ldots, a_{\sigma(m))}\right)}(E) \text { where } \\
& \sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\} \text { is some permutation }\} .
\end{aligned}
$$

If E is a non-trivial finite effect algebra and $A \in M(E)$ we say that A represents E.
It turns out that rows in $A \in M(E)$ are all elements of $S e q_{\left(a_{\sigma(1)}, \ldots, a_{\sigma(m)}\right)}(E)$ where $\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, m\}$ is some permutation. Moreover if $A, B \in M(E)$ then B can be obtained from A by permuting its rows and columns. By e_{k} we understand row $[0, \ldots, 0,1,0, \ldots, 0]$ where 1 is only at k th position.

Definition 3.2. Let $n, m \in \mathbb{N}$. Let $\mathcal{B}_{n m}$ be the set of matrices $A \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ such that
(1) All rows and columns in A are non-zero.
(2) If r_{1} is i th row in A, r_{2} is j th row in A and $r_{2} \geq r_{1}-e_{k} \geq \mathbf{0}$ for some $1 \leq k \leq m$ then $i=j$.
(3) If r_{1}, r_{2}, r_{3} are rows in A and $r_{1}+r_{2} \geq r_{3}$, then $r_{1}+r_{2}-r_{3}$ is a row in A.

The condition (2) in the above Definition follows that distinct rows are incomparable.
Definition 3.3. Let $A=\left[y_{i j}\right] \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ and $X=\{1,2, \ldots, m\}$. Define $T(A)=$ $\left\{t_{1}, \ldots, t_{n}\right\}$ where $t_{1}, t_{2}, \ldots, t_{n}: X \rightarrow \mathbb{N}_{0}$ are functions such that $t_{i}(j)=y_{i j}$.

Lemma 3.4. If $A \in \mathcal{B}_{n m}$ and $X=\{1,2, \ldots, m\}$, then $(X, T(A))$ is an algebraic E-test space.

Proof. Let $A=\left[y_{i j}\right] \in \mathcal{B}_{n m}$.
Let $X=\{1,2, \ldots, m\}$ and $T(A)=\left\{t_{1}, \ldots, t_{n}\right\}$. Then $(X, T(A))$ is an E-test space by (1) and (2) in the Definition 3.2. By Lemma 2.5 and (3) $(X, T(A))$ is algebraic.

The matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right] \notin B_{23}$ since the condition (2) in the Definition 3.2 is not satisfied: $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right] \geq\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]-e_{1} \geq \mathbf{0}$ but $(X, T(A))$ is an algebraic E test space since rows in A are incomparable and algebraicity follows from the Lemma 2.5. So $(X, T(A))$ can be an algebraic E-test space for $A \notin B_{n m}$. Equivalent matrix representation is $A^{\prime}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ (from cancellativity it follows that first and third atom must be the same).

Definition 3.5. Let $A \in \mathcal{B}_{n m}, X=\{1,2, \ldots, m\}$ and $\mathcal{T}=T(A)=\left\{t_{1}, \ldots, t_{n}\right\}$. Then (X, \mathcal{T}) is an algebraic E-test space by Lemma 3.4. By Theorem $2.4 \Pi(A)=\Pi(X)$ can be organized into an effect algebra.

We describe when for a matrix A with m columns there exists a non-trivial effect algebra E with m atoms such that $A \in M(E)$:

Theorem 3.6. Let $A \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ for $n, m \in \mathbb{N}$. Then there exists a non-trivial finite effect algebra E with atoms $a_{1}, \ldots, a_{m}\left(a_{i} \neq a_{j}\right.$ for $\left.i \neq j\right)$ such that $A \in M(E)$ if and only if $A \in \mathcal{B}_{n m}$.

Proof.
\Rightarrow Let $A=\left[y_{i j}\right] \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ and E be a non-trivial finite effect algebra with atoms $a_{1}, \ldots, a_{m}\left(a_{i} \neq a_{j}\right.$ for $\left.i \neq j\right)$ and $a=\left(a_{1}, \ldots, a_{m}\right)$ such that $A \in M(E)$. Then
(1) Each row in A is non-zero: if $\left(x_{1}, \ldots, x_{m}\right)$ is a row in A and $x_{1}=x_{2}=$ $\ldots=x_{m}=0$ then $0=\bigoplus_{t=1}^{m} x_{t} a_{t}=1$ and we get a contradiction since E is non-trivial.
Each column in A is non-zero: let $1 \leq j \leq m$ then there exist non-negative integers k_{1}, \ldots, k_{m} such that $a_{j}^{\prime}=\bigoplus_{i=1}^{m} k_{i} a_{i}$ so

$$
1=a_{j} \oplus a_{j}^{\prime}=\bigoplus_{i=1}^{j-1} k_{i} a_{i} \oplus\left(k_{j}+1\right) a_{j} \oplus \bigoplus_{i=j+1}^{m} k_{i} a_{i}
$$

and $\left(k_{1}, \ldots, k_{j-1}, k_{j}+1, k_{j+1}, \ldots, k_{m}\right) \in \operatorname{Seq}_{a}(E)$ is a row in A with a nonzero j th coordinate. It follows that the j th column is also non-zero.
(2) If $r_{1}=\left(y_{i 1}, \ldots, y_{i m}\right)$ and $r_{2}=\left(y_{j 1}, \ldots, y_{j m}\right)$ and $r_{2} \geq r_{1}-e_{k} \geq \mathbf{0}$ for some $1 \leq k \leq m$ then $y_{j t} \geq y_{i t}$ for $t \neq k$ and $y_{j k} \geq y_{i k}-1$. Therefore

$$
\bigoplus_{t=1}^{m}\left(y_{i t}\right) a_{t}=\bigoplus_{t=1}^{m}\left(y_{j t}\right) a_{t}=1
$$

so by cancellation law we have

$$
a_{k}=\bigoplus_{t=1}^{k-1}\left(y_{j t}-y_{i t}\right) a_{t} \oplus\left(y_{j k}-y_{i k}+1\right) a_{k} \oplus \bigoplus_{t=1}^{m}\left(y_{j t}-y_{i t}\right) a_{t} .
$$

But a_{k} is an atom, so $\left(y_{i 1}, \ldots, y_{i m}\right)=\left(y_{j 1}, \ldots, y_{j m}\right)$. Suppose that $i \neq j$ then we obtain a contradiction since for $A \in M(E)$ we have $\underset{1 \leq i<j \leq n}{\forall} \underset{1 \leq t \leq m}{\exists} y_{i t} \neq$ $y_{j t}$. Hence $i=j$.
(3) Let r_{1}, r_{2}, r_{3} be rows in $A, r_{1}+r_{2} \geq r_{3}$ and $r_{1}=\left(y_{i 1}, \ldots, y_{i m}\right), r_{2}=$ $\left(y_{j 1}, \ldots, y_{j m}\right), r_{3}=\left(y_{k 1}, \ldots, y_{k m}\right)$ then $\bigoplus_{t=1}^{m} y_{i t} a_{t}=\bigoplus_{t=1}^{m} y_{j t} a_{t}=\bigoplus_{t=1}^{m} y_{k t} a_{t}=1$
and $y_{i t}+y_{j t} \geq y_{k t}$ for $1 \leq t \leq m$. Let $x=\left(x_{1}, \ldots, x_{m}\right)$ where $x_{t}=$ $\min \left(y_{i t}, y_{k t}\right)$ for $1 \leq t \leq m$. By cancellation law

$$
\begin{equation*}
\bigoplus_{t=1}^{m}\left(y_{i t}-x_{t}\right) a_{t}=\bigoplus_{t=1}^{m}\left(y_{k t}-x_{t}\right) a_{t} \tag{1}
\end{equation*}
$$

We have $r_{3}-r_{2} \leq r_{1}$ and $r_{3}-r_{2} \leq r_{3}$ so $r_{3}-r_{2} \leq \min \left(r_{1}, r_{3}\right)$ and $y_{k t}-y_{j t} \leq x_{t}$ for $1 \leq t \leq m$. Hence $x_{t}-y_{k t}+y_{j t} \geq 0$ for $1 \leq t \leq m$ and by (1), we obtain

$$
\bigoplus_{t=1}^{m}\left(y_{i t}-x_{t}+x_{t}-y_{k t}+y_{j t}\right) a_{t}=\bigoplus_{t=1}^{m}\left(y_{k t}-x_{t}+x_{t}-y_{k t}+y_{j t}\right) a_{t},
$$

so

$$
\bigoplus_{t=1}^{m}\left(y_{i t}-y_{k t}+y_{j t}\right) a_{t}=\bigoplus_{t=1}^{m}\left(y_{j t}\right) a_{t}=1
$$

and $\left(y_{i 1}+y_{j 1}-y_{k 1}, \ldots, y_{i t}+y_{j t}-y_{k t}, \ldots, y_{i m}+y_{j m}-y_{k m}\right) \in \operatorname{Seq}_{a}(E)$ so $r_{1}+r_{2}-r_{3}$ is a row in A.

Hence $A \in \mathcal{B}_{n m}$.
\Leftarrow Let $A=\left[y_{i j}\right] \in \mathcal{B}_{n m}$.
Let $X=\{1,2, \ldots, m\}$ and $\mathcal{T}=T(A)=\left\{t_{1}, \ldots, t_{n}\right\}$. Then (X, \mathcal{T}) is an algebraic E-test space by Lemma 3.4 . By Theorem $2.4 \Pi(X)$ can be organized into an effect algebra.
We show that $A \in M(\Pi(X))$. It is enough to show that $\operatorname{Seq}(\Pi(X))=\left\{t_{1}, \ldots, t_{n}\right\}$ since the condition $\underset{1 \leq i<j \leq n}{\forall} \underset{1 \leq t \leq m}{\exists} y_{i t} \neq y_{j t}$ follows from (2).
First we describe atoms in $\Pi(X)$. Let $e_{i}: X \rightarrow \mathbb{N}_{0}$ be a function such that $e_{i}(x)=$ $\left\{\begin{array}{ll}0 & x \neq i \\ 1 & x=i\end{array}\right.$ for $1 \leq i \leq m$. Then $e_{i} \in \mathcal{E}(X, \mathcal{T})$ for $1 \leq i \leq m$.
We show that $\left\{\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right\}$ is the set of mutually different atoms in $\Pi(X)$. Let $f \in \mathcal{E}(X, \mathcal{T})$ and let $\pi(f)$ be an atom in $\Pi(X)$. Then $\mathbf{0}<f$ so there exists $i \in\{1, \ldots, m\}$ such that $f(i)>0$ so $f(i) \geq 1$ and $f \geq e_{i}$ so $\pi(f) \geq \pi\left(e_{i}\right)>0$ then $\pi(f)=\pi\left(e_{i}\right)$.
Let $k \in\{1, \ldots, m\}$. We show that $\pi\left(e_{k}\right)$ is an atom in $\Pi(X)$. Let $f \in \mathcal{E}(X, \mathcal{T})$ and $\pi\left(e_{k}\right) \geq \pi(f)>0$. Then there exists $g \in \mathcal{E}(X, \mathcal{T})$ such that $f \perp g$ and $\pi\left(e_{k}\right)=\pi(f) \oplus \pi(g)=\pi(f+g)$ so $e_{k} \approx_{h} f+g$ for some $h \in \mathcal{E}(X, \mathcal{T})$. Then $e_{k}+h \in \mathcal{T}$ and $f+g+h \in \mathcal{T}$, so $r_{1}=e_{k}+h$ and $r_{2}=f+g+h$ are rows in A. Moreover, $r_{2} \geq r_{1}-e_{k}=h \geq \mathbf{0}$, by (2) we have $r_{1}=r_{2}$ so $e_{k}+h=f+g+h$ thus $e_{k}=f+g$ therefore $f=e_{k}$ and $g=\mathbf{0}$ since $\pi(f)>0$. Hence $\pi(f)=\pi\left(e_{k}\right)$ so $\pi\left(e_{k}\right)$ is an atom.
Now we show that $\pi\left(e_{i}\right) \neq \pi\left(e_{j}\right)$ for $1 \leq i<j \leq m$. Assume that $\pi\left(e_{i}\right)=\pi\left(e_{j}\right)$ for $i, j \in\{1, \ldots, m\}$. Then there exists $f \in \mathcal{E}(X, \mathcal{T})$ such that $e_{i} \approx_{f} e_{j}$ thus $e_{i}+f, e_{j}+f \in \mathcal{T}$ and $r_{1}=e_{i}+f, r_{2}=e_{j}+f$ are rows in A. Then $r_{2} \geq f=$
$r_{1}-e_{i} \geq \mathbf{0}$ so $r_{1}=r_{2}$ by (2), hence $e_{i}=e_{j}$ so $i=j$. This ends the proof that $\left\{\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right\}$ is the set of mutually different atoms in $\Pi(X)$.
Now we prove that $S e q_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}(\Pi(X))=\left\{t_{1}, \ldots, t_{n}\right\}$.
Let $i \in\{1, \ldots, n\}$. Then $t_{i}=\left(y_{i 1}, \ldots, y_{i m}\right) \in \operatorname{Seq}_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}(\Pi(X))$ is equivalent to

$$
\bigoplus_{t=1}^{m} y_{i t} \pi\left(e_{t}\right)=1 .
$$

We know that $t_{i}=y_{i 1} e_{1}+\cdots+y_{i m} e_{m} \in \mathcal{T}$ thus

$$
1_{E A}=\pi\left(t_{i}\right)=\pi\left(y_{i 1} e_{1}+\cdots+y_{i m} e_{m}\right)=\bigoplus_{t=1}^{m} y_{i t} \pi\left(e_{t}\right)
$$

so $t_{i} \in S e q_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}(\Pi(X))$ and $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq \operatorname{Seq}_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}(\Pi(X))$.
Let $t=\left(x_{1}, \ldots, x_{m}\right) \in \operatorname{Seq}_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}(\Pi(X))$ then

$$
1_{E A}=\bigoplus_{t=1}^{m} x_{t} \pi\left(e_{t}\right)=\pi\left(x_{1} e_{1}+\cdots+x_{m} e_{m}\right)=\pi(t)
$$

hence $t \in \mathcal{T}=\left\{t_{1}, \ldots, t_{n}\right\}$ so $\operatorname{Seq}_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}\left(\Pi(X) \subseteq\left\{t_{1}, \ldots, t_{n}\right\}\right.$ thus

$$
\operatorname{Seq}_{\left(\pi\left(e_{1}\right), \ldots, \pi\left(e_{m}\right)\right)}(\Pi(X))=\left\{t_{1}, \ldots, t_{n}\right\}
$$

and $A \in M(\Pi(X))$.

In the following Lemma we describe events in $(X, T(A))$.
Lemma 3.7. Let E be a non-trivial finite effect algebra with atoms $a_{1}, \ldots, a_{m}\left(a_{i} \neq a_{j}\right.$ for $i \neq j), A \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ and $A \in M(E)$. Let $f: X \rightarrow \mathbb{N}_{0}$ be a function, where $X=\{1, \ldots, m\}$. Then

$$
f \in \mathcal{E}(X, T(A)) \Longleftrightarrow \bigoplus_{i=1}^{m} f(i) a_{i} \text { exists in } E .
$$

Proof. By Theorem 3.6 and Lemma $3.4(X, T(A))$ is an algebraic E-test space.
Assume that $f \in \mathcal{E}(X, T(A))$ then there exists $t \in T(A)$ such that $\mathbf{0} \leq f \leq t$ and

$$
\bigoplus_{i=1}^{m} t(i) a_{i}=1
$$

since $A \in M(E)$. Hence $\bigoplus_{i=1}^{m} t(i) a_{i}$ exists in E so $\bigoplus_{i=1}^{m} f(i) a_{i}$ exists in E.

Assume that $x=\bigoplus_{i=1}^{m} f(i) a_{i}$ exists in E. Let $x^{\prime}=\bigoplus_{i=1}^{m} k_{i} a_{i}$ for $k_{i} \in \mathbb{N}_{0}$ for all $i \in X$. Then

$$
1=x \oplus x^{\prime}=\bigoplus_{i=1}^{m}\left(f(i)+k_{i}\right) a_{i} .
$$

Let $t: X \rightarrow \mathbb{N}_{0}$ be a function such that $t(i)=f(i)+k_{i}$ for all $i \in X$. Then $t \in T(A)$ since $A \in M(E)$. Moreover $\mathbf{0} \leq f \leq t$ so $f \in \mathcal{E}(X, T(A))$.

Theorem 3.8. Let E be a non-trivial finite effect algebra with m atoms, $A \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ and $A \in M(E)$. Then effect algebras E and $\Pi(A)$ are isomorphic.

Proof. Let E be a non-trivial finite effect algebra with atoms $a_{1}, \ldots, a_{m}\left(a_{i} \neq a_{j}\right.$ for $i \neq j), A \in M_{n \times m}\left(\mathbb{N}_{0}\right)$ and $A \in M(E)$. Then $A \in \mathcal{B}_{n m}$ by Theorem 3.6. Let $X=\{1,2, \ldots, m\}$ and $T(A)=\left\{t_{1}, \ldots, t_{n}\right\}$. Then $(X, T(A))$ is an algebraic E-test space by Lemma 3.4 By Theorem $2.4 \Pi(A)=\Pi(X)$ can be organized into an effect algebra.

Let $\phi: E \rightarrow \Pi(X)$ be a function such that if $x=\bigoplus_{i=1}^{m} x_{i} a_{i}$ then $\phi(x)=\pi(f)$, where $f: X \rightarrow \mathbb{N}_{0}$ is a function such that $f(i)=x_{i}$ for all $i \in X$. By Lemma 3.7, we have $f \in \mathcal{E}(X, T(A))$.

Now we show that ϕ is well-defined. Let $x=\bigoplus_{i=1}^{m} x_{i} a_{i}=\bigoplus_{i=1}^{m} y_{i} a_{i}$ in E and $f, g: X \rightarrow \mathbb{N}_{0}$ be functions such that $f(i)=x_{i}$ and $g(i)=y_{i}$ for all $i \in X$. Let $x^{\prime}=\bigoplus_{i=1}^{m} z_{i} a_{i}$ then

$$
\bigoplus_{i=1}^{m}\left(x_{i}+z_{i}\right) a_{i}=1, \quad \bigoplus_{i=1}^{m}\left(y_{i}+z_{i}\right) a_{i}=1
$$

Let $h: X \rightarrow \mathbb{N}_{0}$ be a function such that $h(i)=z_{i}$ for all $i \in X$. Then $f+h, g+h \in T(A)$ so $f \approx_{h} g$ hence $\pi(f)=\pi(g)$.

Now we show that ϕ is a bijection.
Let $x, y \in E$ and assume that $\phi(x)=\phi(y)$. Then there exists $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \in$ \mathbb{N}_{0} such that $x=\bigoplus_{i=1}^{m} x_{i} a_{i}, y=\bigoplus_{i=1}^{m} y_{i} a_{i}$ and if $f, g: X \rightarrow \mathbb{N}_{0}$ are functions such that $f(i)=x_{i}$ and $g(i)=y_{i}$ for all $i \in X$ and $\pi(f)=\pi(g)$. Then there exists $h \in \mathcal{E}(X, T(A))$ such that $f \approx_{h} g$ so $f+h \in T(A)$ and $g+h \in T(A)$ thus

$$
\bigoplus_{i=1}^{m}\left(x_{i}+z_{i}\right) a_{i}=1, \quad \bigoplus_{i=1}^{m}\left(y_{i}+z_{i}\right) a_{i}=1,
$$

where $z_{i}=h(i)$ for all $i \in X$. Hence

$$
x \oplus \bigoplus_{i=1}^{m}\left(z_{i}\right) a_{i}=y \oplus \bigoplus_{i=1}^{m}\left(z_{i}\right) a_{i}
$$

and $x=y$ by cancellation law.
Let $f \in \mathcal{E}(X, T(A))$. By Lemma 3.7 we have $x=\bigoplus_{i=1}^{m}(f(i)) a_{i}$ exists in E and $\phi(x)=$ $\pi(f)$. This ends the proof that ϕ is a bijection.

By Proposition 1.3 there exist $x_{1}, \ldots, x_{m} \in \mathbb{N}_{0}$ such that $1=\bigoplus_{i=1}^{m} x_{i} a_{i}$ then $\phi(1)=$ $\pi(f)$ where $f(i)=x_{i}$ for all $i \in X$. Moreover $f \in T(A)$ since $A \in M(E)$. Hence $\pi(f)=\phi(1)=1$.

Let $x, y \in E$. We show that $x \perp y \Longleftrightarrow \phi(x) \perp \phi(y)$. By Proposition 1.3 there exist $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \in \mathbb{N}_{0}$ such that $x=\bigoplus_{i=1}^{m} x_{i} a_{i}$ and $y=\bigoplus_{i=1}^{m} y_{i} a_{i}$. Let $f, g: X \rightarrow \mathbb{N}_{0}$ be functions such that $f(i)=x_{i}$ and $g(i)=y_{i}$ for all $i \in X$. Then $f, g \in \mathcal{E}(X, T(A))$ by Lemma 3.7.

If $x \perp y$ then $x \oplus y=\bigoplus_{i=1}^{m}\left(x_{i}+y_{i}\right) a_{i}$ exists in E. By Lemma 3.7 we have $f+g \in$ $\mathcal{E}(X, T(A))$ so $\pi(f+g)=\pi(f) \oplus \pi(g)=\phi(x) \oplus \phi(y)$ exists in $\Pi(A)$ so $\phi(x) \perp \phi(y)$.

If $\phi(x) \perp \phi(y)$ then $\pi(f+g)=\pi(f) \oplus \pi(g)=\phi(x) \oplus \phi(y)$ exists in $\Pi(A)$ so $f+g \in$ $\mathcal{E}(X, T(A))$ and $\bigoplus_{i=1}^{m}\left(x_{i}+y_{i}\right) a_{i}=x \oplus y$ exists in E by Lemma 3.7. Hence $x \perp y$.

Now we show that $\phi(x \oplus y)=\phi(x) \oplus \phi(y)$ for all $x, y \in E$ such that $x \perp y$.
Let $x, y \in E$ and $x=\bigoplus_{i=1}^{m} f(i) a_{i}, y=\bigoplus_{i=1}^{m} g(i) a_{i}$ for some functions $f, g: X \rightarrow \mathbb{N}_{0}$. Then $x \oplus y=\bigoplus_{i=1}^{m}(f(i)+g(i)) a_{i}$ and

$$
\phi(x) \oplus \phi(y)=\pi(f) \oplus \pi(g)=\pi(f+g)=\phi(x \oplus y)
$$

so $\phi: E \rightarrow \Pi(X)$ is an isomorphism of effect algebras.
Corollary 3.9. Let E_{1}, E_{2} be non-trivial finite effect algebras. Then E_{1} and E_{2} are isomorphic if and only if $M\left(E_{1}\right)=M\left(E_{2}\right)$.
Proof. Let E_{1}, E_{2} be non-trivial finite effect algebras.
\Leftarrow If $M\left(E_{1}\right)=M\left(E_{2}\right)$ and $A \in M\left(E_{1}\right)$ then E_{1} and $\Pi(A)$ are isomorphic by Theorem 3.8. Moreover, E_{2} and $\Pi(A)$ are isomorphic by Theorem 3.8. Hence E_{1} and E_{2} are isomorphic.
\Rightarrow Assume that E_{1} and E_{2} are isomorphic. Let $\phi: E_{1} \rightarrow E_{2}$ be an isomorphism. If $a_{1}, \ldots, a_{m}\left(a_{i} \neq a_{j}\right.$ for $\left.i \neq j\right)$ are atoms of E_{1} then $\phi\left(a_{1}\right), \ldots, \phi\left(a_{m}\right)$ are atoms of E_{2}. Let us observe that

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{m}\right) \in \operatorname{Seq}_{\left(a_{1}, \ldots, a_{m}\right)}\left(E_{1}\right) \Longleftrightarrow \bigoplus_{i=1}^{m} x_{i} a_{i}=1 \text { in } E_{1} \Longleftrightarrow \\
& \bigoplus_{i=1}^{m} x_{i} \phi\left(a_{i}\right)=1 \text { in } E_{2} \Longleftrightarrow\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Seq}_{\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{m}\right)\right)}\left(E_{2}\right)
\end{aligned}
$$

since ϕ is an isomorphism. Hence $\operatorname{Seq}_{\left(a_{1}, \ldots, a_{m}\right)}\left(E_{1}\right)=\operatorname{Seq}_{\left(\phi\left(a_{1}\right), \ldots, \phi\left(a_{m}\right)\right)}\left(E_{2}\right)$ and $M\left(E_{1}\right)=M\left(E_{2}\right)$.

By Corollary 3.9, the cardinality (up to isomorphism) of finite non-trivial effect algebras with m atoms and k elements is equal to cardinality of the set $\left\{A \in B_{n m}:|\Pi(A)| \leq\right.$ k and $n \in \mathbb{N}\} / \sim$, where $A \sim B$ if and only if B can be obtained from A by some permutation of rows or columns.

List of matrices representing nontrivial finite effect algebras of cardinatily at most 8 :

- 2-elem.: [1],
- 3-elem.: [2],
- 4-elem.: $[3],\left[\begin{array}{ll}1 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$,
- 5-elem.: [4], $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$,
- 6-elem.: [5], $\left[\begin{array}{ll}1 & 2\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right],\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, $\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$
- 7-elem.: $[6],\left[\begin{array}{cc}2 & 1 \\ 0 & 4\end{array}\right],\left[\begin{array}{cc}4 & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{cc}5 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & 2\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1 \\ 4 & 0 & 0\end{array}\right],\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$,
$\left[\begin{array}{lll}0 & 0 & 2 \\ 1 & 2 & 0 \\ 3 & 0 & 0\end{array}\right],\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right],\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right],\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right],\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$,
$\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$
- 8-elem.: $[7],\left[\begin{array}{ll}1 & 3\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 1 & 3\end{array}\right],\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right],\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 6\end{array}\right],\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}5 & 0 \\ 1 & 2\end{array}\right]$, $\left[\begin{array}{ll}4 & 0 \\ 2 & 2 \\ 0 & 4\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right],\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 1 & 2\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 3\end{array}\right]$, $\left[\begin{array}{lll}0 & 1 & 1 \\ 5 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0\end{array}\right],\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right],\left[\begin{array}{lll}0 & 0 & 3 \\ 1 & 1 & 1 \\ 3 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 3 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 2 \\ 1 & 2 & 0 \\ 3 & 0 & 0\end{array}\right]$,

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 2 \\
1 & 2 & 0 \\
4 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right],\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right],} \\
& {\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 1 & 2
\end{array}\right],\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 1 & 2
\end{array}\right],} \\
& {\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right],\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}\right],\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right],\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right],} \\
& {\left[\begin{array}{lllll}
3 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right],\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llllll}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right],\left[\begin{array}{llllll}
2 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right] .}
\end{aligned}
$$

So we have (up to isomorphism):

- one 2-element effect algebra,
- one 3-element effect algebra,
- three 4-element effect algebras,
- four 5 -element effect algebras,
- ten 6 -element effect algebras,
- fourteen 7-element effect algebras,
- forty 8 -element effect algebras,

The list of all effect algebras up to 11-elements can be found at https://www.mat.savba.sk/~hycko/wprepea/.

Definition 3.10. A state on an effect algebra E is a mapping $s: E \rightarrow[0,1] \subseteq \mathbb{R}$ such that $s(1)=1$ and if $a \oplus b$ is defined, then $s(a \oplus b)=s(a)+s(b)$.

Definition 3.11. Let

$$
A=\left[y_{i j}\right] \in M_{n \times m}\left(\mathbb{N}_{0}\right)
$$

then denote

$$
\left[\begin{array}{cccc}
y_{11} & \ldots & y_{1 m} & 1 \\
\vdots & & \vdots & \vdots \\
y_{n 1} & \ldots & y_{n m} & 1
\end{array}\right]
$$

by $(A \mid 1)$.
The following theorem gives the necessary condition enabling algebra to have a state.
Theorem 3.12. Let E be a non-trivial finite effect algebra with atoms a_{1}, \ldots, a_{m}. Let $A \in M(E)$ and $B=(A \mid 1)$. If E has a state then rank $A=\operatorname{rank} B$.

Proof. Let

$$
A=\left[y_{i j}\right] \in M(E) \cap M_{n \times m}\left(\mathbb{N}_{0}\right)
$$

Suppose that E has a state $h: E \rightarrow[0,1]$. Let $s_{t}=h\left(a_{t}\right) \geq 0$ for $1 \leq t \leq m$. We know that $\bigoplus_{t=1}^{m} y_{i t} a_{t}=1$ for $1 \leq i \leq n$ since $A \in M(E)$. Hence $1=h(1)=h\left(\bigoplus_{t=1}^{m} y_{i t} a_{t}\right)=$ $\sum_{t=1}^{m} y_{i t} h\left(a_{t}\right)=\sum_{t=1}^{m} y_{i t} s_{t}$. Thus

$$
A \cdot\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

By Rouché-Capelli Theorem [12], rank $A=\operatorname{rank} B$, where $B=(A \mid 1)$.

Problem. Prove or disprove: if E is a finite effect algebra with atoms a_{1}, \ldots, a_{m}, $A \in M(E)$ and $B=(A \mid 1)$ then E has a state if and only if rank $A=\operatorname{rank} B$.

In [6] Greechie gives an example of finite effect algebra that has no states. This effect algebra E has 12 atoms $\left\{a_{1}, \ldots, a_{12}\right\}$ such that $a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{4}=1, a_{5} \oplus a_{6} \oplus a_{7} \oplus a_{8}=1$, $a_{9} \oplus a_{10} \oplus a_{11} \oplus a_{12}=1, a_{1} \oplus a_{5} \oplus a_{9}=1, a_{2} \oplus a_{6} \oplus a_{10}=1, a_{3} \oplus a_{7} \oplus a_{11}=1$, $a_{4} \oplus a_{8} \oplus a_{12}=1$. Let

$$
A=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

then $A \in M(E)$ and the echelon form of $(A \mid 1)$ is (using Maxima, see [9]).

$$
\left[\begin{array}{lllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

So $\operatorname{rank} A=6$ and $\operatorname{rank}(A \mid 1)=7$. Thus E has no state by 3.12 .
In [10], Riečanová found example of finite effect algebra E that has no states. This effect algebra E has 3 atoms $\{a, b, c\}$ such that $a \oplus b \oplus c=1,3 a=4 b=3 c=1$. Let

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

then $B \in M(E)$ and rank $B=3$ and $\operatorname{rank}(B \mid 1)=4$ thus E has no state by 3.12
This effect algebra E is represented by the following Hasse diagram:

The above effect algebra E has 9 elements. Using the list of all matrices representing effect algebras which have at most 8 elements it is easy to check that every effect algebras of cardinality ≤ 8 has a state. So the Riečanová's example is smallest one.

REFERENCES

[1] P. Bush, P. J. Lahti, and P. Mittelstadt: The quantum theory of measurement. In: The Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer, Berlin, Heidelberg 1991. DOI:10.1007/978-3-662-13844-1_3
[2] P. Bush, M. Grabowski, and P. J. Lahti: Operational Quantum Physics. Springer-Verlag, Berlin 1995. DOI:10.1007/978-3-540-49239-9
[3] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava 2000. DOI:10.1007/978-94-017-2422-7
[4] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352. DOI:10.1007/BF02283036
[5] R. Giuntini and H. Grueuling: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945. DOI:10.1007/BF01889307
[6] R. J. Greechie: Orthomodular lattices admitting no states. J. Combinat. Theory 10 (1971), 119-132. DOI:10.1016/0097-3165(71)90015-X
[7] S. Gudder: Effect test spaces and effect algebras. Found. Phys. 27 (1997), 287-304. DOI:10.1007/BF02550455
[8] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21-34.
[9] Maxima: https://maxima.sourceforge.io
[10] Z. Riečanová: Proper Effect Algebras Admitting No States. Int. J. Theoret. Physics 40 (2001), 10, 1683-1691. DOI:10.1023/A:1011911512416
[11] Wei Ji: Characterization of homogeneity in orthocomplete atomic effect algebras. Fuzzy Sets Systems 236 (2014), 113-121. DOI:10.1016/j.fss.2013.06.005
[12] Wikipedia: https://en.wikipedia.org/wiki/Rouché-Capelli_theorem

Grzegorz Binczak, Department of Algebra and Combinatorics, Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw. Poland. e-mail: grzegorz.binczak@pw.edu.pl

Joanna Kaleta, Department of Applied Mathematics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, 02-787 Warsaw. Poland.
e-mail: joanna_kaleta@sggw.edu.pl
Andrzej Zembrzuski, Department of Informatics, Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences, 02-787 Warsaw. Poland.
e-mail: andrzej_zembrzuski@sggw.edu.pl

