Kybernetika 59 no. 5, 723-736, 2023

An elementary proof of Marcellini Sbordone semicontinuity theorem

Tomáš G. Roskovec and Filip SoudskýDOI: 10.14736/kyb-2023-5-0723

Abstract:

The weak lower semicontinuity of the functional $$ F(u)=\int_{\Omega}f(x,u,\nabla u) {\rm d} x $$ is a classical topic that was studied thoroughly. It was shown that if the function $f$ is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on $W^{1,p}(\Omega)$. However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.

Keywords:

convexity, sequential semicontinuity, calculus of variation, minimizer

Classification:

49J45, 49J20, 46E35

References:

  1. E. Acerbi and N. Fusco: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984), 2, 125-145.   DOI:10.1007/BF00275731
  2. J.-J. Alibert and B. Dacorogna: An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Rational Mech. Anal. 117 (1992), 2, 155-166.   DOI:10.1007/BF00387763
  3. J. M. Ball, B. Kirchheim and J. Kristensen: Regularity of quasiconvex envelopes. Calc. Var. Partial Differential Equations 11 (2000), 4, 333-359.   DOI:10.1007/s005260000041
  4. B. Benešová and M. Kružík: Weak lower semicontinuity of integral functionals and applications. SIAM Rev. 59 (2017), 4, 703-766.   DOI:10.1137/16M1060947
  5. B. Bourdin, G. A. Francfort and J.-J. Marigo: The variational approach to fracture. J. Elasticity 91 (2008), 1-3, 5-148.   DOI:10.1007/s10659-007-9107-3
  6. B. Dacorogna: Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals. Lecture Notes in Mathematics Vol. 922, Springer-Verlag, Berlin - New York 1982.   CrossRef
  7. B. Dacorogna: Direct Methods in the Calculus of Variations, Vol. 78. Springer Science and Business Media, 2007.   DOI:10.1007/978-3-642-51440-1
  8. P. du Bois-Reymond: Erläuterungen zu den anfangsgründen der variationsrechnung. Math. Ann. 15 (1879), 2, 283-314.   DOI:10.1007/BF01444144
  9. G. Eisen: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscripta Math. 27 (1979), 1, 73-79.   DOI:10.1007/BF01297738
  10. I. Ekeland: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324-353.   CrossRef
  11. I. Ekeland: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.) 1 (1979), 3, 443-474.   DOI:10.1090/S0273-0979-1979-14595-6
  12. I. Ekeland and R. Temam: Analyse convexe et problèmes variationnels. Collection Études Mathématiques. Dunod, Paris, Gauthier-Villars, Paris - Brussels - Montreal 1974.   CrossRef
  13. I. Fonseca and J. Malý: Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), 3, 309-338.   CrossRef
  14. I. Fonseca and S. Müller: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999), 6, 1355-1390.   DOI:10.1137/S0036141098339885
  15. M. Giaquinta and E. Giusti: On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31-46.   DOI:10.1007/BF02392725
  16. E. Giusti: Direct Methods in the Calculus of Variations. World Scientific, 2003.   CrossRef
  17. Y. Grabovsky: From microstructure-independent formulas for composite materials to rank-one convex, non-quasiconvex functions. Arch. Ration. Mech. Anal. 227 (2018), 2, 607-636.   DOI:10.1007/s00205-017-1169-1
  18. A. Guerra and J. Kristensen: Automatic quasiconvexity of homogeneous isotropic rank-one convex integrands. Arch. Ration. Mech. Anal. 245 (2022), 1, 479-500.   DOI:10.1007/s00205-022-01792-2
  19. A. Kałamajska: On lower semicontinuity of multiple integrals. Colloq. Math. 74 (1997), 1, 71-78.   DOI:10.4064/cm-74-1-71-78
  20. J. Kristensen: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999), 4, 653-710.   DOI:10.1007/s002080050277
  21. J. Kristensen: A necessary and sufficient condition for lower semicontinuity. Nonlinear Anal. 120 (2015), 43-56.   DOI:10.1016/j.na.2015.02.018
  22. J. Kristensen and F. Rindler: Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and BV. Arch. Ration. Mech. Anal. 197 (2010), 2, 539-598.   DOI:10.1007/s00205-009-0287-9
  23. J. L. Lagrange: Mécanique analytique, Vol. 1. Mallet - Bachelier, 1853.   CrossRef
  24. G. Leoni: A First Course in Sobolev Spaces, Vol. 181 Graduate Studies in Mathematics. (Second edition.) American Mathematical Society, Providence 2017.   CrossRef
  25. J. Lukeš and J. Malý: Measure and Integral. (Second edition.) Matfyzpress, Prague 2005.   CrossRef
  26. P. Marcellini: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985), 1-3, 1-28.   CrossRef
  27. P. Marcellini and C. Sbordone: Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4 (1980), 2, 241-257.   DOI:10.1016/0362-546X(80)90052-8
  28. N. G. Meyers: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965), 125-149.   DOI:10.1090/S0002-9947-1965-0188838-3
  29. G. Mingione: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006), 4, 355-426.   DOI:10.1007/s10778-006-0110-3
  30. Ch. B. Morrey and Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), 25-53.   DOI:10.2140/pjm.1952.2.25
  31. F. Prinari: On the lower semicontinuity and approximation of $L^\infty$-functionals. NoDEA Nonlinear Differential Equations Appl. 22 (2015), 6, 1591-1605.   DOI:10.1007/s00030-015-0337-y
  32. J. Serrin: On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961), 139-167.   DOI:10.1090/S0002-9947-1961-0138018-9
  33. S. Sil: Calculus of variations: a differential form approach. Adv. Calc. Var. 12 (2019), 1, 57-84.   CrossRef
  34. L. Tonelli: La semicontinuità nel calcolo delle variazioni. Rendiconti del Circolo Matematico di Palermo (1884-1940), 44 (1920), 1, 167-249.   DOI:10.1177/0040571X2000100416
  35. A. Verde and G. Zecca: Lower semicontinuity of certain quasiconvex functionals in Orlicz-Sobolev spaces. Nonlinear Anal. 71 (2009), 10, 4515-4524.   DOI:10.1016/j.na.2009.03.021
  36. V. Šverák: Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 1-2, 185-189.   CrossRef