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AN ELEMENTARY PROOF OF MARCELLINI SBORDONE
SEMICONTINUITY THEOREM

Tomáš G. Roskovec, Filip Soudský

The weak lower semicontinuity of the functional

F (u) =

ˆ
Ω

f(x, u,∇u) dx

is a classical topic that was studied thoroughly. It was shown that if the function f is continuous
and convex in the last variable, the functional is sequentially weakly lower semicontinuous on
W 1,p(Ω). However, the known proofs use advanced instruments of real and functional analysis.
Our aim here is to present a proof understandable even for students familiar only with the
elementary measure theory.
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1. INTRODUCTION AND THE MAIN RESULT

Many optimization problems in physics may be formulated in terms of minimization of
the functional in the form of

F (v) =

ˆ
Ω

f(x, v,∇v) dx, (M)

over some setW of admissible functions. This problem is very classical, and its roots can
be traced to the 17th century. The systematic study was launched later by Lagrange,
du Boys–Reymond, and others (see, for instance, [8, 23]). They formulated the Euler-
Lagrange equations as necessary conditions to hold for the minimizer. However, the
minimizer’s existence must be proved first (otherwise, even solving the Euler-Lagrange
equations does not guarantee finding the solution). As many examples show, the exis-
tence of the minimizer cannot be expected in general. Therefore, we have to add some
additional assumptions on the function f in (M) to assure the existence of a minimizer.
The existence problem, however, is typically approached with advanced methods, in-
cluding the knowledge of certain parts of the functional analysis, the measure theory,
and the function spaces. We present an alternative proof of the existence of a minimizer
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under the convexity condition of f with a given boundary data. Unlike the classical ones,
our proof uses only elementary methods of the measure theory and the real analysis,
and its direction is easy to follow. Our calculation is done in detail, and we intentionally
avoid shortening it with advanced tools.

Now, we specify the problem. Let us consider a domain Ω ⊂ Rn with a Lipschitz
boundary and let f ∈ C(Ω × R × Rn). Let u0 ∈ W 1,p(Ω,Rd), we denote the set of all
functions in given Sobolev space with the same boundary data as u0 by

W := u0 +W 1,p
0 (Ω,Rd). (1)

Let p ∈ (1,∞), by p-growth condition of f we mean, if there exists 1 ≤ q < p such that

(∃c0 > 0)(∃c1 ∈ R, c2 ∈ L1(Ω))(∀(x, u, ξ) ∈ Ω× Rd × Rz)
f(x, u, ξ) ≥ c0|ξ|p + c1|u|q + c2(x).

(p-G)

As some authors do, the proof can be slightly simplified by considering c1 and c2 positive
constants. Also, d is the dimension of the image of functions in (1), which can be d = 1
but also higher for vector-valued functions, we leave d general in statements, but we focus
on the case d = 1. Note that the case of p = 1 follows immediately from Lemma 3.1.
However, since the Sobolev space W 1,1 is not reflexive, even the sequential weak lower
semicontinuity does not guarantee the existence of the minimizer. The case p = ∞ is
also covered in some books (for instance, see [7]), however, this would require a different
technique. We consider the convexity property of f in the last variable

ξ 7→ f(x, u, ξ) is convex for all (x, u) ∈ Ω× Rd. (conv)

In the following text we consider only functional F and set W satisfying

(∃u ∈ W) F (u) <∞ ∧ (∀u ∈ W) F (u) > −∞. (fin)

Our problem is to prove that the minimizer of (M) on W exists under conditions
(conv), (fin), and (p-G). Note that the existence follows immediately from Theorems
1.1 and 1.2. Our contribution is the new student-friendly proof of Theorem 1.1. The
reader is encouraged to compare our proof with the classical proofs in [1, 7, 26] or [16];
in these proofs, useful tools are both approximations by the functions with controlled
growth and regularity or replacing and extending the functions on the irregular parts
of the domain, also the maximal operator is used. Later, Ka lamajska wrote short proof
[19] with the help of the theory of Young measures. For the sake of completeness and
convenience of the reader, we include proof of Lemma 1.2 although this one is similar to
the known ones.

Note that the condition of continuity of f can be relaxed, and one may consider the
Caratheodory function instead (see [7]), however, this is done easily using the Scorza-
Dragoni theorem 4.1, thus we restrict ourselves to continuous functions.

Theorem 1.1. (Weak sequential lower semicontinuity) Let Ω ⊂ Rn be a domain
with a Lipchitz boundary and let u0 ∈ W 1,p(Ω,Rd). Let f ∈ C(Ω × Rd × Rn×d) be a
function such that (conv) holds. Then, the functional F given by (M) is sequentially
weakly lower semicontinuous.
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Lemma 1.2. (Coercivity) Let Ω ⊂ Rn be a domain with a Lipchitz boundary and
let u0 ∈ W 1,p(Ω,Rd). Let f ∈ C(Ω × Rd × Rn×d) be a function satisfying (p-G).
Let (uk)k ⊂ W given by (1) be a minimizing sequence of functional F given by (M).
Moreover, let condition (fin) hold. Then uk is bounded in W 1,p(Ω,Rd).

Theorem 1.3. (Existence of minimizer) Let Ω ⊂ Rn be a domain with a Lipchitz
boundary. Let f ∈ C(Ω× Rd × Rn×d) be a function satisfying (conv) and (p-G). Let F
be the functional given by (M) satisfying (fin). Then F has a minimizer in W defined
by (1).

The paper is structured into Section 2, where we prepare some observations and
lemmata and prove Lemma 1.2, Section 3, where we prove the main result, and Appendix
4, where we present known proofs of Lemma 1.2 and Theorem 1.3 and recall some well-
known theorems for the convenience of less experienced readers.

1.1. Development and connection to literature

As for the development in the literature, the result we reprove is the predecessor of
the celebrated result of Acerbi and Fusco in 1984 [1]. Their methods include maximal
operators, an extension of functions, and a lower semicontinuous envelope. The paper
also contains the proof even for quasiconvex vector valued f , which we do not include.
The result succeeded the previous results by Tonelli [34], where the Theorem 1.1 was
proved with much stricter conditions. Later, the conditions were relaxed in the regularity
of f ; for development of this, see [12, 32] or [27]. We decided to name our paper after
Marcellini and Sbordone, the authors of [27], as their assumptions are the most similar
to ours. For vector-valued u, the assumption of convexity is no longer necessary and can
be relaxed to various weaker properties. Initially, the result was given by Morrey [30]
and generalized by Meyers [28] under stronger regularity requiring only quasi-convexity.
More results were published by Ball, Liu, Dacorogna, Marcellini, and others with finer
properties under more relaxed assumptions, such as polyconvexity or rank-one convexity.
As the definitions of particular generalizations of convexity differ, we are led to study
differences and inclusions between these classes. The topic was addressed by Šverák [36]
and Alibert and Dacorogna [2] or recent results by Sil [33] and Grabovsky [17]. The
ongoing trend is to ensure an improvement of convexity type by studying additional
properties [18]. Note that even though (p-G) conditions can not be left out, they can be
relaxed into finer scales than powers [35]. An essential tool is controlling f by the convex
envelope, see [3] for studying its properties and dependence on growth conditions. Let
us emphasise that the variation problems without convexity are also approached, see
[10, 11].

Let us briefly overview some milestones and interesting papers in the field surrender-
ing or following the Acerbi-Fusco theorem [1]. In 1982, a significant result about the
regularity of the minimizer was done by Giaquinta and Giusti [15]. We recommend the
paper by Mingione [29] for a broad survey on this topic. Approximation methods by
Marcellini [26] improve the Acerbi-Fusco theorem in 1985. Significant relaxation result
was presented in 1997 by Fonseca and Malý [13]. A version of convexity based on curl
called A-convexity initially considered by Dacorogna [6] is shown to be the optimal vari-
ant of definition for the lower semicontinuity property by Fonseca and Müller in 1999
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[14]. The Young measure theory is used by Ka lamajska in 1997 to shorten the proof
of the Acerbi-Fusco result. Also, by the theory of Young measure, Kristensen in 1999
provided new approximation results in [20], and in 2015 he redefined growth conditions
for gradient Young functions and characterise the lower semicontinuity in this setting
[21]. Kristensen and Rindler studied the case of the lower semicontinuity among W 1,1

and BV functions in this setting in 2010 [22]. Recent result by Prinari covers the lower
semicontinuity and approximation properties for L∞ functionals [31]. The splendid re-
sult by Bourdin, Francfort, and Gilles put the variational approach to address Griffith
fracture models [5] in 2007.

The proper list of references would be overwhelming. Thus, we had to omit a lot.
We strongly recommend the recent survey paper by Benešová and Kruž́ık [4] that offers
an overview and directions for further study of development and questions still open.

1.2. Question of convexity

Let us emphasise that replacing the convexity with the quasiconvecxity changes the
problem’s difficulty. By the quasiconvexity, several different properties may be consid-
ered; for example, continuous f : Rm×n → R is quasiconvex if for every ξ ∈ Rm×n, for
every open Ω ⊂ Rn, and every function u ∈ C1

0 (Ω,Rm) we have

|Ω|f(ξ) ≤
ˆ

Ω

f(ξ +Du(x)) dx.

This restriction allows us to simplify the proof a lot, as much harder tools would be
required, as the class is much wider than the class of convex functions. As we aim for
student-friendly proof, we cover only the convex case.

The proof can also be simplified by either omitting the second variable in (M), the
functions itself or by assuming convexity even in this variable. We do not use this
simplification.

2. SOME AUXILIARY RESULTS AND OBSERVATIONS

In this and the following text, we use measure theory. However, even though the for-
mulation of lemmata and observations are more general, we apply them only for the
Lebesgue measure in spaces R and Rn.

Observation 2.1. Let (Ω, µ) be a finite measure space and let f ∈ L0(Ω) and g ∈ L1(Ω)
be functions for which g(x) ≤ f(x) holds for a.e. x ∈ Ω. Let Ωk ⊂ Ω be sets such that
|Ω \ Ωk| → 0. Then we get

lim
k

(ˆ
Ωk

f dµ

)
=

ˆ
Ω

f dµ.

Note, that partition of a set M means the pair-wise disjoint family Mm such that⋃
m

Mm = M.
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Given a partition P we denote the norm of the partition by

ν(P) := max
j∈m
{diam(Pj)} .

Lemma 2.2. Let Ω ⊂ Rn be a bounded domain, u ∈ L1(Ω) and let P = (Pj)
m
j=1 be a

partition of Ω. Define

uP :=

m∑
j=1

χPj

 
Pj

u.

Then we have
lim

ν(P)→0
|{|uP − u| > ε}| = 0 (∀ε > 0).

P r o o f . Let us first show that the statement is valid for continuous functions. Pick
ε, γ > 0. Given a positive η let us denote

Ωη := {x ∈ Ω : dist(x,Ωc) > η}.

We choose η so small that
|Ω \ Ω2η| < γ.

Since u is uniformly continuous on Ωη, there exists δ > 0 such that

|x− y| < δ ⇒ |u(x)− u(y)| < ε ∀x, y ∈ Ωη.

Now choose a partition P with

ν(P) < min{η, δ}. (2)

For all x ∈ Ω2η we have that
|u(x)− uP(x)| < ε.

Hence
|{|u− uP | > ε}| < γ

as soon as (2) holds. The convergence in measure for the continuous function is proved.
Given a α, ε > 0 and u ∈ L1(Ω) we first choose v continuous such that

‖u− v‖L1 ≤ εα,

then, by the triangle inequality

|{|u− uP | > 3ε}| ≤ |{|u−v| > ε}|+ |{|v−vP | > ε}|+ |{|uP −vP | > ε}| =: I+ II+ III.

Note that u 7→ uP is non-expansive mapping in L1, so we estimate

‖uP − vP‖L1 ≤ εα.

Hence, by Chebyschev inequality 4.8, we have I + III < 2α. Since v is continuous, it is
enough to choose the norm of the partition small to obtain II < α. �
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3. PROOF OF THEOREM 1.1 AND THEOREM 1.3

Let u ∈ L0(Ω,Rd) and v ∈ Lp(Ω,Rz). Given such functions let us consider

JΩ(u, v) :=

ˆ
Ω

f(x, u(x), v(x)) dx. (3)

Let us denote the norm topology in Lp by Lp and the topology of weak convergence by

Lpw. We also denote the convergence in the Lebesgue measure by
dx→. Let us define the

topology
τ = L0 × Lpw

for (uk, vk) ∈ L0(Ω,Rd)× Lp(Ω,Rz) by

(uk, vk)
τ→ (u, v) if

(
uk

dx→ u ∧ vk
Lp

⇀ v
)
.

The following lemma is somewhat similar to the Eisen Lemma (see [9]).

Lemma 3.1. Let Ω ⊂ Rn be a bounded domain, p ∈ [1,∞), f ∈ C(Ω × Rd × Rz) be
function satisfying (conv) and let b ∈ L1(Ω) be a function such that

f(x, u, v) ≥ b(x) ∀(x, u, v) ∈ Ω× Rd × Rz. (4)

Then the functional JΩ defined in (3) is sequentially lower semicontinuous with respect
to topology τ .

Lemma 3.2. Let Ω ⊂ Rn be a bounded domain, p ∈ (1,∞) and let f ∈ C(Ω×Rd×Rz)
be a function satisfying (p-G) and (conv). Then JΩ defined in (3) is sequentially lower
semicontinuous with respect to topology Lq × Lpw.

P r o o f . (Proof of Lemma 3.1) Choose ε > 0. Let (uk, vk) be a sequence convergent to
(u, v) in the topology τ . Since uk converges to u in measure, by the Riesz thm. 4.4 one
may assume that uk(x)→ u(x) for a.e. x ∈ Ω. Hence, by the Yegorov thm. 4.6 and the
Luzin thm. 4.7 for every l natural there exists a compact set Ωl ⊂ Ω such that(

|Ω \ Ωl| ≤
1

l

)
∧ (uk ⇒ u on Ωl) ∧ (u ∈ C(Ωl)) .

Define
S := sup

k
sup
x∈Ωl

|uk(x)|.

We may assume that S < ∞. Note that the function (x, u) 7→ f(x, u, ξ) is uniformly
continuous on Ωl × [−S, S]×B(0, 2j) for arbitrary j natural. Now, let us denote by ηj
the strictly positive number such that for all x, x ∈ Ωl, u, u ∈ [−S, S]

|(x, u)− (x, u)| < 6ηj (5)

implies
|f(x, u, ξ)− f(x, u, ξ)| < ε (∀|ξ| ≤ 2j).
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Without loss of generality one may suppose that ηj is decreasing and

|u(x)− uk(x)| ≤ ηk (∀x ∈ Ωl). (6)

Moreover, since the function u is uniformly continuous, by the triangle inequality and
double usage of (6), for each j, there exists positive δj < ηj (δj decreasing) such that
for all x, y ∈ Ω, one has

|x− y| < δj implies |(x, uk(x))− (y, uk(y))| < 3ηj (∀k ≥ j).

Use the previous estimates to observe

|x− y| < δj implies |(x, uk(x))− (y, u(y))| < 6ηj (∀k ≥ j). (7)

For j, k naturals denote

Ek,j := {|vk| ≤ j} ∩ Ωl, Gj := {|v| ≤ j} ∩ Ωl. (8)

Note that, using the Chebychev inequality thm. 4.8 and boundedness of vk in Lp we
obtain that there exists C > 0 independent of j, k such that

|Ωl \Gj | ≤ C/jp and |Ωl \ Ek,j | ≤ C/jp. (9)

By uniform continuity of (x, u, ξ) 7→ f(x, u, ξ) on Ωl × [−S, S] × B(0, 2j), for every
natural j there exists γj such that

|ξ−ξ| < γj ⇒ |f(x, u, ξ)−f(x, u, ξ)| < ε (∀(x, u) ∈ Ωl×[−S, S] and ∀ξ, ξ ∈ B(0, 2j)
(10)

By Lemma 2.2 we obtain that for each j natural there exists a finite partition of Gj ,

consider such a partition P = (Kj
m)

Mj

m=1 satisfying

(i) ν(P) < δj .

(ii)
∑
m

∣∣∣{x ∈ Kj
m : |v −

ffl
Kj

m
v| > γj}

∣∣∣ < 1/j.

By the weak convergence of vk to v in Lp one has

lim
k

 
Kj

m

(v − vk) = 0.

Therefore, one may assume without the loss of generality,∣∣∣∣ 
Kj

m

(v − vk)

∣∣∣∣ ≤ γk (∀k ≥ j) (11)

(if this doesn’t hold, one can pass to the appropriate sub-sequence). Set

Qjm :=

{
x ∈ Kj

m : |v(x)−
 
Kj

m

v| ≤ γj
}

(12)
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and denote

Qj :=
⋃
m

Qjm. (13)

Note that by (8) and the property (ii) of the parts Kj
m one has |Gj \ Qj | ≤ 1

j . Pick
aj > j such that ∣∣∣∣ 

Kj
m

vjχEc
j,aj

dx

∣∣∣∣ < γj . (14)

Moreover, let Qjm,t be a partition of Qjm such that

diam(Qjm,t) < δaj ,

and let us choose arbitrary xjm,t ∈ Q
j
m,t, creating 2δaj net. For the following estimate,

denote

ξj,m :=

 
Kj

m

v dx, ξ♠j,m :=

 
Kj

m

vj dx,

ξ♥j,m :=

 
Kj

m

vjχEj,aj
dx, ṽj :=vjχEj,aj

,

T := max
(x,u)∈Ωl×[−S,S]

|f(x, u, 0)|.

(15)

Note that (14) estimate the difference of functions above as∣∣∣ξ♠j,m − ξ♥j,m∣∣∣ =

∣∣∣∣ 
Kj

m

vjχEc
j,aj

dx

∣∣∣∣ < γj . (16)

Let us estimate

ˆ
Qj

f(x, u, v) dx
(7),(5)

≤
∑
m

ˆ
Qj

m

f(xjm, uj(x
j
m), v) dx+ |Ωl|ε

(12),(10)

≤
∑
m

ˆ
Qj

m

f(xjm, uj(x
j
m), ξj,m) dx+ 2|Ωl|ε

(11),(10)

≤
∑
m

ˆ
Qj

m

f(xjm, uj(x
j
m), ξ♠j,m) dx+ 3|Ωl|ε

(7),(5)

≤
∑
m

∑
t

ˆ
Qj

m,t

f(xjm,t, uj(x
j
m,t), ξ

♠
j,m) dx+ 4|Ωl|ε

(16),(10)

≤
∑
m

∑
t

ˆ
Qj

m,t

f(xjm,t, uj(x
j
m,t), ξ

♥
j,m) dx+ 5|Ωl|ε

Thm 4.3
≤

∑
m

∑
t

ˆ
Qj

m,t

f(xjm,t, uj(x
j
m,t), ṽj) dx+ 5|Ωl|ε.

Note that using the Jensen inequality in the last estimate is the crucial step, where
convexity (conv) comes into play. Note that we may question if more general versions,
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such as quasi-convexity, can be used in this step. Following the fact that xjm,t is a 2δaj
net and the inequalities (5),(7) and (6), we estimate

≤
∑
m

∑
t

ˆ
Qj

m,t

f(x, uj , ṽj) dx+ 6|Ωl|ε

(13),part. of Qj
m=

ˆ
Qj

f(x, uj , ṽj) dx+ 6|Ωl|ε.

To estimate we split th domain into Qj ∩ Ej,aj where ṽj = vj and Qj ∩ Ecj,aj , where

we estimate |f | ≤ T . In the last estimate, we add to the right-hand side integral of
non-negative f − b over the set Ωl \ (Ej,aj ∩Qj), so we estimate

(15)

≤
ˆ
Ej,aj

∩Qj

f(x, uj , vj) dx+ T |Ecj,aj |+ 6|Ωl|ε

(9)

≤
ˆ

Ωl

f(x, uj , vj) dx+
TC

apj
+ 6|Ωl|ε−

ˆ
Ωl\(Ej,aj

∩Qj)

b(x) dx.

Passing to the limit with ε→ 0+ yields

JQj
(u, v) ≤ JΩl

(uj , vj) +
TC

apj
−
ˆ

Ωl\(Ej,aj
∩Qj)

b(x) dx.

Using Observation 2.1 and (4), passing to limit for j →∞ we obtain

JΩ(u, v) ≤ lim sup
j

JΩl
(uj , vj),

which is equivalent to sequential lower semicontinuity of JΩ on the topological space
(L0(Ω)× Lp(Ω), τ). �

P r o o f . (Proof of the Lemma 3.2) Given a function satisfying (p-G), define the auxiliary
function

f̃(x, u, ξ) := f(x, u, ξ)− c1|u|q

and functional

J̃(u, v) :=

ˆ
Ω

f̃(x, u, v) dx.

By the Lemma 3.1, the functional J̃ is sequentially lower semicontinuous with respect
to topology τ . Hence it is sequentially lower semicontinuous with respect to Lq × Lpw
and thus

J(u, v) = J̃(u, v)+c1

ˆ
Ω

|u|q dx ≤ lim inf
k

J̃(uk, vk)+c1 lim
k

ˆ
Ω

|uk|q dx = lim inf
k

J(uk, vk).

�
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P r o o f . (Proof of Theorem 1.1) Let uk ⇀ u in W 1,p. Using the Rellich–Kondrachev
theorem 4.5 without loss of generality, we may suppose that uk → u strongly in Lp while

∇uk
Lp

⇀ ∇u. Hence, by the preceding Lemma 3.2, we obtain that

F (u) = J(u,∇u) ≤ lim inf
k

J(uk,∇uk) = lim inf
k

F (uk).

�

4. APPENDIX

4.1. Coercivity and the existence of the minimizer

P r o o f . (Proof of Lemma 1.2, Coercivity) Let ũk ∈ W be a minimizing sequence of F .
Denote

uk := ũk − u0. (17)

First, we prove the sequence is bounded in W 1,p(Ω). Suppose the contrary that uk
is unbounded. Without loss of generality (otherwise, pass to a proper subsequence),
suppose

0 < ‖uk‖W 1,p →∞,

the Friedrich inequality thm. 4.2 implies

‖∇uk‖p →∞.

This implication does not have to be true in general, but thanks to uk ≡ 0 on the
boundary, it has to hold. Now, by (p-G) we estimate

F (ũk) ≥ c0‖∇ũk‖pp − |c1|‖ũk‖qq + ‖c2‖1
(17)

≥ c0(‖∇uk‖pp − ‖∇u0‖pp)− |c1|(‖uk‖qq + ‖u0‖qq) + ‖c2‖1
Thm. 4.2
≥ c0‖∇uk‖pp − C(Ω)c1‖∇uk‖qq + C(u0, c1, c2,Ω)

Hölder in.
≥ c0‖∇uk‖pp − C(c1,Ω)‖∇uk‖qp + C(u0, c1, c2,Ω)

= ‖∇uk‖pp
(
c0 − C(c1,Ω)‖∇uk‖q−p − ‖∇uk‖−pp C(u0, c1, c2,Ω)

)
.

As p > q, the second and the third terms in the bracket tend to zero, and c0 > 0, the
remaining expression diverges to infinity as k tends to infinity. But this contradicts the
fact that uk is a minimizing sequence. �

P r o o f . (Proof of Theorem 1.3, Existence of minimizer) Let f ∈ C(Ω × R × Rn) be
a function satisfying (p-G) and (conv). Let uk be a minimizing sequence. By Lemma
1.2 we have that uk is bounded in W 1,p(Ω). Alaoglu theorem implies that the closed
ball in W 1,p(Ω) is compact, therefore we may assume that uk is weakly convergent to
u ∈ W 1,p(Ω). Let us emphasise that by the Rellich–Kondrachev theorem 4.5, we also
may assume that uk → u in Lq(Ω). We get

(uk,∇uk)→ (u,∇u) in the topology Lq × Lpw.
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Using the Theorem 1.1 we obtain that

F (u) ≤ lim inf
k→∞

F (uk) = inf{F (u)|u ∈ W}.

Hence, u is the minimizer. �

4.2. Recalled theorems

The following results are standard knowledge. The proofs can be found in [7, 24, 25]
etc.

Theorem 4.1. (Scorza-Dragoni) Let ε > 0 and f : Ω×R×Rn → R be measurable in
the first variable and continuous in the second and third one. Then there exists compact
set K ⊂ Ω such that |Ω \K| < ε and f |K×R×Rn is continuous.

Theorem 4.2. (Friedrichs inequality) Let Ω ⊂ Rn be a domain with Lipchitz bound-
ary, p ∈ 〈1,∞〉. There exists constant CΩ such that

‖u‖p ≤ CΩ‖∇u‖p

holds for all u ∈W 1,p
0 (Ω).

Theorem 4.3. (Jensen inequality) Let N ⊂ Rn be a convex set. Let µ be a measure
with a finite total variation on N . Let ϕ : N → R be a convex function. Let E ⊂ N be
a measurable set. Then, the following inequality holds

ϕ

( 
E

xdµ(x)

)
≤
 
E

ϕ(x) dµ(x).

Theorem 4.4. (Riesz) Let (Ω, µ) be a space with measure and let uk be a sequence
of measurable functions such that

uk
µ→ u uk converge in measure to u.

Then, there exists an increasing sequence of indices lk such that

ulk(x)→ u(x) for µ− a.e. x ∈ Ω.

Theorem 4.5. (Rellich–Kondrachev) Let p ∈ (1,∞) and let 1 ≤ q < np
n−p for p < n

or 1 ≤ q <∞ for p ≥ n. Let Ω ⊂ Rn be a bounded domain with Lipchitz boundary. And
let uk ∈ W 1,p(Ω) be a bounded sequence in W 1,p(Ω), then there exists an increasing
sequence of indices lk and u ∈ Lq(Ω) such that

‖u− ulk‖Lq(Ω) → 0.

Theorem 4.6. (Yegorov) Let Ω ⊂ Rn measurable, let uk be a sequence of measurable
functions such that

uk(x)→ u(x) for µ− a.e. x ∈ Ω.

Then, there exists the sequence of sets Nj and the strictly increasing sequence kj such
that

(Y1)Nj ⊂ Nj+1, (Y2)µ(Ω \Nj) ≤ 1/j, (Y3) |u− ukj | < 1/j on Nj .
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Theorem 4.7. (Luzin) Let µ be a complete Radon measure on locally compact space
and measurable function u finite µ-almost everywhere. Then for open K and ε > 0 there
exist open G ⊂ K such that u is continuous on K \G and µ(G) < ε.

Theorem 4.8. (Chebysev inequality) Let Ω ⊂ Rn measurable, u ∈ L0(Ω), p ∈
〈1,∞) and let t ∈ (0,∞) then one has

tp |{|u| > t}| ≤
ˆ

Ω

|u(x)|p dx.
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[4] B. Benešová and M. Kruž́ık: Weak lower semicontinuity of integral functionals and
applications. SIAM Rev. 59 (2017), 4, 703–766. DOI:10.1137/16M1060947

[5] B. Bourdin, G. A. Francfort, and J.-J. Marigo: The variational approach to fracture. J.
Elasticity 91 (2008), 1–3, 5–148. DOI:10.1007/s10659-007-9107-3

[6] B. Dacorogna: Weak Continuity and Weak Lower Semicontinuity of Nonlinear Function-
als. Lecture Notes in Mathematics Vol. 922, Springer-Verlag, Berlin – New York 1982.

[7] B. Dacorogna: Direct Methods in the Calculus of Variations, Vol. 78. Springer Science
and Business Media, 2007. DOI:10.1007/978-3-642-51440-1
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Mathématiques. Dunod, Paris, Gauthier-Villars, Paris – Brussels – Montreal 1974.
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