Kybernetika 59 no. 5, 700-722, 2023

Duality for a fractional variational formulation using $\eta$-approximated method

Sony Khatri and Ashish Kumar PrasadDOI: 10.14736/kyb-2023-5-0700

Abstract:

The present article explores the way $\eta$-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta$-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases.

Keywords:

duality, optimal solution, variational problem

Classification:

49J40, 49N15, 90C46, 90C32

References:

  1. T. Antczak: A new approach to multiobjective programming with a modified objective function. J. Global Optim. 27 (2003), 485-495.   DOI:10.1023/A:1026080604790
  2. T. Antczak: An $\eta$-approximation approach for nonlinear mathematical programming problems involving invex functions. Numer. Funct. Anal. Optim, 25 (2004), 423-438.   DOI:10.1081/NFA-200042183
  3. T. Antczak: A new method of solving nonlinear mathematical programming problems involving $r$-invex functions. Journal of Mathematical Analysis and Applications 311 (2005), 313-323.   DOI:10.1016/j.jmaa.2005.02.049
  4. T. Antczak: Saddle point criteria in an $\eta$-approximation method for nonlinear mathematical programming problems involving invex functions. J. Optim. Theory Appl, 132 (2007), 71-87.   DOI:10.1007/s10957-006-9069-9
  5. T. Antczak: On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems. J. Global Optim. 59 (2014), 757-785.   DOI:10.1007/s10898-013-0092-8
  6. T. Antczak and A. Michalak: $\eta$-Approximation method for non-convex multiobjective variational problems. Numer. Funct. Anal. Optim. 38 (2017), 1125-1142.   DOI:10.1080/01630563.2017.1314970
  7. C. R. Bector and I. Husain: Duality for multiobjective variational problems. J. Math. Anal. Appl. 166 (1992), 214-229.   DOI:10.1016/0022-247X(92)90337-D
  8. S. Chandra, B. D. Craven and I. Husain: Continuous programming containing arbitrary norms. J. Austral. Math. Soc. 39 (1985), 28-38.   DOI:10.1017/S144678870002214X
  9. W. S. Dorn: A symmetric dual theorem for quadratic programs. J. Oper. Res. Soc. Japan 2 (1960), 93-97.   CrossRef
  10. M. K. Ghosh and A. J. Shaiju: Existence of value and saddle point in infinite-dimensional differential games. J. Optim. Theory Appl. 121 (2004), 301-325.   DOI:10.1023/B:JOTA.0000037407.15482.72
  11. M. A. Hanson: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550.   CrossRef
  12. I. Husain and A. Ahmed: Mixed type duality for a variational problem with strong pseudoinvex constraints. Soochow J. Math. 32 (2006), 589-603.   CrossRef
  13. A. Jayswal, T. Antczak and S. Jha: On equivalence between a variational problem and its modified variational problem with the $\eta$-objective function under invexity. Int. Trans. Oper. Res. 26 (2019), 2053-2070.   DOI:10.1111/itor.12377
  14. S. Jha, P. Das and T. Antczak: Exponential type duality for $\eta$-approximated variational problems. Yugoslav J. Oper. Res. 30 (2019), 19-43.   DOI:10.2298/YJOR190415022J
  15. K. Khazafi, N. Rueda and P. Enflo: Sufficiency and duality for multiobjective control problems under generalized (B, $\rho$)-type I functions. J. Global Optim. 46 (2010), 111-132.   DOI:10.1007/s10898-009-9412-4
  16. T. Li, Y. Wang, Z. Liang and P. M. Pardalos: Local saddle point and a class of convexification methods for nonconvex optimization problems. J. Global Optim. 38 (2007), 405-419.   DOI:10.1007/s10898-006-9090-4
  17. B. Mond, S. Chandra and I. Husain: Duality for variational problems with invexity. J. Math. Anal. Appl. 134 (1988), 322-328.   DOI:10.1016/0022-247X(88)90026-1
  18. B. Mond and M. A. Hanson: Duality for variational problems. J. Math. Anal. Appl. 18 (1967), 355-364.   DOI:10.1016/0022-247X(67)90063-7
  19. B. Mond and T. Weir: Generalized concavity and duality. In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279.   CrossRef
  20. B. Mond and I. Husain: Sufficient optimality criteria and duality for variational problems with generalized invexity. J. Austral. Math. Soc. 31 (1989), 108-121.   DOI:10.1017/S0334270000006512
  21. C. Nahak and S. Nanda: Duality for multiobjective variational problems with invexity. Optimization 36 (1996), 235-248.   DOI:10.1080/02331939608844181
  22. C. Nahak and N. Behera: Optimality conditions and duality for multiobjective variational problems with generalized $\rho-(\eta,\theta)$ - B-type-I functions. J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages.   DOI:0.1155/2011/497376
  23. G. J. Zalmai: Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems. Optimization 30 (1994), 15-51.   DOI:10.1080/02331939408843969
  24. L. Zhian and Y. Qingkai: Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256 (2001), 446-461.   DOI:10.1006/jmaa.2000.7284