Kybernetika 59 no. 5, 670-699, 2023

Design of a neuro-sliding mode controller for interconnected quadrotor UAVs carrying a suspended payload

Özhan Bingöl and Haci Mehmet GüzeyDOI: 10.14736/kyb-2023-5-0670

Abstract:

In this study, a generalized system model is derived for interconnected quadrotor UAVs carrying a suspended payload. Moreover, a novel neural network-based sliding mode controller (NSMC) for the system is suggested. While the proposed controller uses the advantages of the robust structure of sliding mode controller (SMC) for the nonlinear system, the neural network component eliminates the chattering effects in the control signals of the SMC and increases the efficiency of the SMC against time-varying dynamic uncertainties. After the controller design is carried out, a comprehensive stability analysis based on Lyapunov theory is given to assure the asymptotic stability of the system. Finally, extensive numerical simulations with detailed comparisons are used to verify the effectiveness of the proposed controller.

Keywords:

autonomous UAV, interconnected system, neuro-sliding mode control, payload transportation

Classification:

93D05, 93D21, 68T40

References:

  1. E. Altug, J. P. Ostrowski and C. J. Taylor: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Rob. Res. 24 (2005), 5, 329-341.   DOI:10.1016/j.csm.2005.01.002
  2. Ö. Bingöl and H. M. Güzey: Neuro sliding mode control of quadrotor UAVs carrying suspended payload. Adv. Robot. 35 (2021), 3-4, 255-266.   DOI:10.1080/01691864.2020.1870557
  3. Ö. Bingöl and H.-M. Güzey: Finite-time neuro-sliding-mode controller design for quadrotor uavs carrying suspended payload. Drones 6 (2022), 10, 311.   DOI:10.3390/drones6100311
  4. \"{0}. Bingöl and H. M. Güzey: Fixed-time neuro-sliding mode controller design for quadrotor uav transporting a suspended payload. European J. Control 73 (2023), 100879.   DOI:10.1016/j.ejcon.2023.100879
  5. M. Bisgaard, A. la Cour-Harbo and J. {Dimon Bendtsen}: Adaptive control system for autonomous helicopter slung load operations. Control Eng. Pract., 2010.   CrossRef
  6. S. Bouabdallah, P. Murrieri and R. Siegwart: Design and control of an indoor micro quadrotor. In: Proc. IEEE International Conference on Robotics and Automation, ICRA'04, IEEE 2004. Vol. 5, pp. 4393-4398.   DOI:10.1109/robot.2004.1302409
  7. Y. Chen and H. Chen: Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode. Kybernetika 59 (2023), 2, 273-293.   DOI:10.14736/kyb-2023-2-0273
  8. P. J. Cruz, M. Oishi and R. Fierro: Lift of a cable-suspended load by a quadrotor: A hybrid system approach. In: Proc. Am. Control Conf. 2015, pp. 1887-1892.   DOI:10.1109/acc.2015.7171008
  9. K. K. Dhiman, M. Kothari and A. Abhishek: Autonomous load control and transportation using multiple quadrotors. J. Aerosp. Inf. Syst. 17 (2020), 8, 417-435.   DOI:10.2514/1.i010787
  10. T. Dierks and S. Jagannathan: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Networks 2010.   CrossRef
  11. M. Ertugrul and O. Kaynak: Neuro sliding mode control of robotic manipulators. Mechatronics 10 (2000), 1-2, 239-263.   DOI:10.1016/S0957-4158(99)00057-4
  12. A. Faust, I. Palunko, P. Cruz, R. Fierro and L. Tapia: Automated aerial suspended cargo delivery through reinforcement learning. Artif. Intell. 2017.   CrossRef
  13. S. Frikha, M. Djemel and N. Derbel: A new adaptive neuro-sliding mode control for gantry crane. Int. J. Control Autom. Syst. 16 (2018), 2, 559-565.   DOI:10.1007/s12555-017-0070-x
  14. M. Gassner, T. Cieslewski and D. Scaramuzza: Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors. In: Proc. IEEE Int. Conf. Robot. Autom. 2017, pp. 5196-5202.   CrossRef
  15. J. Geng and J. W. Langelaan: Cooperative transport of a slung load using load-leading control. J. Guid. Control. Dyn. 43 (2020), 7, 1313-1331.   DOI:10.2514/1.G004680
  16. S. Grzonka, G. Grisetti and W. Burgard: A fully autonomous indoor quadrotor. IEEE Trans. Robot. 28 (2012), 1, 90-100.   DOI:10.1109/tro.2011.2162999
  17. K. Guo, J. Jia, X. Yu, L. Guo and L. Xie: Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances. Control Eng. Pract. 102 (2019), 104560.   DOI:10.1016/j.conengprac.2020.104560
  18. G. Hoffmann, H. Huang, S. Waslander and C. Tomlin: Quadrotor helicopter flight dynamics and control: Theory and experiment. In: AIAA Quidance, Navigation and Control Conference and Exhibit 2007, p. 6461.   CrossRef
  19. Z. Hou, P. Lu and Z. Tu: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure. Aerosp. Sci. Technol. 98 (2020), 105716.   DOI:10.1016/j.ast.2020.105716
  20. J. Hwangbo, I. Sa, R. Siegwart and M. Hutter: Control of a quadrotor with reinforcement learning. IEEE Robot. Autom. Lett. 2 (2017), 4, 2096-2103.   DOI:10.1109/LRA.2017.2720851
  21. Q. Jiang and V. Kumar: The inverse kinematics of cooperative transport with multiple aerial robots. IEEE Trans. Robot. 29 (2013), 1, 136-145.   DOI:10.1109/TRO.2012.2218991
  22. J. J. Slotine and S. S. Sastry: Tracking control of nonlinear systems using sliding surfaces. Int. J. Control 38 (1083), 2, 465-492.   CrossRef
  23. T. Lee, M. Leok and N. B. Mcclamroch: Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J. Control 15 (2013), 2, 391-408.   DOI:10.1002/asjc.567
  24. R. Lei and L. Chen: Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults. Kybernetika 57 (2021), 1, 160-173.   DOI:10.14736/kyb-2021-1-0160
  25. Arie Levant: Principles of 2-sliding mode design. Automatica 43 (2007), 4, 576-586.   DOI:10.1016/j.automatica.2006.10.008
  26. F. L. Lewis: Neural network control of robot manipulators. IEEE Expert. Syst. their Appl. 1996.   CrossRef
  27. G. Li, R. Ge and G. Loianno: Cooperative transportation of cable suspended payloads with MAVs using monocular vision and inertial sensing. IEEE Robot. Autom. Lett. 6 (2021), 3, 5316-5323.   DOI:10.1109/LRA.2021.3065286
  28. H. Lim, J. Park, D. Lee and H. J. Kim: Build your own quadrotor: Open-source projects on unmanned aerial vehicles. 2012.   CrossRef
  29. Z. Liu, X. Liu, J. Chen and Ch. Fang: Altitude control for variable load quadrotor via learning rate based robust sliding mode controller. IEEE Access 7 (2019), 9736-9744.   DOI:10.1109/ACCESS.2018.2890450
  30. A. Noordin, M. A. M. Basri, Z.Mohamed and I. {Mat Lazim}: Adaptive PID controller using sliding mode control approaches for quadrotor UAV attitude and position stabilization. Arab. J. Sci. Engrg. 46 (2021), 2, 963-981.   DOI:10.1007/s13369-020-04742-w
  31. I. Palunko, R. Fierro and P. Cruz: Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: A dynamic programming approach. In: Proc. IEEE Int. Conf. Robot. Autom.,2012, pp. 2691-2697.   DOI:10.1109/icra.2012.6225213
  32. I. Henrique Beloti Pizetta, A. S. Brandao and M. Sarcinelli-Filho: Modelling and control of a PVTOL quadrotor carrying a suspended load. In: Int. Conf. Unmanned Aircr. Syst. ICUAS 2015.   CrossRef
  33. F. Plestan, A. Glumineau and S. Laghrouche: A new algorithm for high-order sliding mode control. Int. J. Robust Nonlinear Control 18 (2008), 4-5, 441-453.   DOI:10.1002/rnc.1234
  34. P. Pounds, R. Mahony and P. Corke: Modelling and control of a large quadrotor robot. Control Eng. Pract. 18 (2010), 7, 691-699.   DOI:10.1016/j.conengprac.2010.02.008
  35. Ch. Qian and W. Lin: Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst. Control Lett. 42 (2001), 3, 185-200.   DOI:10.1016/S0167-6911(00)00089-X
  36. F. Rossomando, C. Rosales, J. Gimenez, L. Salinas, C. Soria, M. Sarcinelli-Filho and R. Carelli: Aerial load transportation with multiple quadrotors based on a kinematic controller and a neural SMC DYNAMIC COMPEnsation. J. Intell. Robot. Syst. Theory Appl. 100 (2020), 2, 519-530.   DOI:10.1007/s10846-020-01195-z
  37. B. Shirani, M. Najafi and I. Izadi: Cooperative load transportation using multiple UAVs. Aerosp. Sci. Technol. 84 (2019), 158-169.   DOI:10.1016/j.ast.2018.10.027
  38. K. Sreenath, T. Lee and V. Kumar: Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. In: 52nd IEEE Conf. Decis. Control, Vol. 2019, pp. 2269-2274.   CrossRef
  39. V. I. Utkin: Survey Paper: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 1977.   CrossRef
  40. M. Vahdanipour and M. Khodabandeh: Adaptive fractional order sliding mode control for a quadrotor with a varying load. Aerosp. Sci. Technol. 86 (2019), 737-747.   DOI:10.1016/j.ast.2019.01.053
  41. D. K. D. Villa, A. S. Brandão and M. Sarcinelli-Filho: A survey on load transportation using multirotor UAVs. J. Intell. Robot. Syst. Theory Appl. 98 (2020), 2, 267-296.   DOI:10.1007/s10846-019-01088-w
  42. J. Wang, F. Wang, X. Wang and L. Yu: Disturbance observer based integral terminal sliding mode control for permanent magnet synchronous motor system. Kybernetika 55 (2019), 3, 586-603.   DOI:10.14736/kyb-2019-3-0586
  43. J. J. Xiong and G. Zhang: Sliding mode control for a quadrotor UAV with parameter uncertainties. In: Proc. 2nd Int. Conf. Control. Autom. Robot. ICCAR 2016.   CrossRef
  44. K. Yi, F. Gu, L. Yang, Y. He and J. Han: Sliding mode control for a quadrotor slung load system. In: Chinese Control Conf. CCC, 2017.   CrossRef
  45. W. You, F. Li, L. Liao and M. Huang: Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of quadrotor UAV. IEEE Access 8 (2020), 64971-64981.   DOI:10.1109/ACCESS.2020.2985053
  46. G. Yu, D. Cabecinhas, R. Cunha and C. Silvestre: Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatronics 24 (2019), 5, 2304-2315.   DOI:10.1109/TMECH.2019.2930211
  47. Ch. Zhang, S. Li and S. Ding: Finite-time output feedback stabilization and control for a quadrotor mini-aircraft. Kybernetika 48 (2012), 2, 206-222.   CrossRef
  48. B. Zhou, J. Pan, F. Gao and S. Shen: RAPTOR: Robust and perception-aware trajectory replanning for quadrotor fast flight. IEEE Trans. Robot. 37 (2021), 6, 1992-2009.   DOI:10.1109/TRO.2021.3071527
  49. X. Zhou, R. Liu, J. Zhang and X. Zhang: Stabilization of a quadrotor with uncertain suspended load using sliding mode control. In: Proc. ASME Des. Eng. Tech. Conf. 2016.   DOI:10.1115/detc2016-60060