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DESIGN OF A NEURO-SLIDING MODE CONTROLLER
FOR INTERCONNECTED QUADROTOR UAVS CARRYING
A SUSPENDED PAYLOAD

Özhan Bingöl and Haci Mehmet Güzey

In this study, a generalized system model is derived for interconnected quadrotor UAVs
carrying a suspended payload. Moreover, a novel neural network-based sliding mode controller
(NSMC) for the system is suggested. While the proposed controller uses the advantages of the
robust structure of sliding mode controller (SMC) for the nonlinear system, the neural network
component eliminates the chattering effects in the control signals of the SMC and increases the
efficiency of the SMC against time-varying dynamic uncertainties. After the controller design
is carried out, a comprehensive stability analysis based on Lyapunov theory is given to assure
the asymptotic stability of the system. Finally, extensive numerical simulations with detailed
comparisons are used to verify the effectiveness of the proposed controller.
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1. INTRODUCTION

The number of studies on quadrotor UAVs has recently increased significantly [4, 17,
19, 30, 45, 48]. Due to their advantages over conventional aircraft, including smaller
construction, agility, low prices, and maneuverability, quadrotors stand out as the most
popular UAVs in both civil and military applications [18, 34]. As a result of their
widespread use, studies on UAVs and load-carrying applications are rapidly increasing.
The quadrotor is a highly suitable candidate for autonomous transportation due to its
high manoeuvrability, vertical take-off and landing capability, and the ability to trans-
port loads of almost its own body weight [12]. Despite their superior advantages, their
limited load capacities severely restrict their load-carrying applications. In addition, in
the event of any malfunction, it is possible to lose the load along with the quadrotor
[41]. Therefore, using multiple quadrotors significantly increases load capacity and also
increases the safety of the cargo in the event of any malfunction.

Due to their under-actuated structure, the control problem of a quadrotor itself
presents many difficulties. In addition to these difficulties, carrying a suspended payload
entirely alters the flight dynamics of the quadrotor, posing new challenges in the vehicle’s
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control scheme that must be overcome [5]. The performance of the control algorithms
developed for their control, as well as the structural elements of the quadrotors, are
critical to a successful flight. [28].

Much research in the literature has investigated the difficulty of controlling quadrotor
UAVs [6, 16, 20, 23, 47]. There are also many studies conducted on systems carrying
payloads with one or two UAVs [3, 8, 14, 31, 32, 36, 38, 46]. But there is a limited
amount of research on load-transporting systems with more than two quadrotors. In
[21], a comprehensive study of the inverse kinematics problem for payloads transported
by three quadrotors is explored. An inverse kinematics problem is formulated based on
the static equilibrium equations, and an efficient analytical algorithm based on dialytic
elimination is presented to solve the inverse kinematics problem. However, the number
of quadrotors used in the study is limited to three. To extend the number of quadrotor
UAVs in [15], a payload-leading control for multiple quadrotor system was considered.
The desired rotorcraft states were derived by kinematics analysis with knowledge of
payload states and desired cable forces. As a controller, a PID-based control structure
was given. The proposed controller in Shirani et al. [37] was also developed for any
number of quadrotors. An LQR-PID controller was suggested to guarantee a fixed
formation for UAVs to successfully transport the payload. With a similar approach,
Dhiman et al. [9] suggested a cooperative control structure that was designed to control
the movement of the quadrotors and the suspended load for n-number of quadrotors
with a UAV formation that ensures the load distribution among UAVs. A combination
of PID and PD controllers was used as the controller. In a different approach compared
to traditional controllers, Li et al. [27] used a vision-based controller design for three
quadrotors that transported fixed-shaped cargo. A distributed estimation approach was
used, allowing each quadrotor to independently estimate cable direction and speed.

Choosing the right controller for nonlinear systems is crucial. Sliding mode control
(SMC), which is a robust control technique against system uncertainties, parameter
changes, and external disturbances, stands out as a frequently preferred technique in
the control of nonlinear systems [39]. Zhou et al. [49] compared a PD controller with
a sliding mode controller to control a quadrotor that was carrying a suspended payload
and demonstrated the robustness of the sliding mode controller against load swings and
uncertainties. In [40], an adaptive frictional sliding mode controller for a quadrotor
transporting a varying payload was developed, and numerical simulations showed the
success of sliding mode-based controllers. Other recent work has also demonstrated
the effectiveness of SMC-based controllers in the applications of load transportation
with quadrotor UAVs [29, 44]. Even though SMC provides robust control for nonlinear
systems, in the case of time-varying dynamic uncertainties, a full knowledge of the plant
dynamics is needed to calculate a proper controller [11, 24]. Many different methods
have been developed in the literature to successfully eliminate this phenomenon [25,
33, 22, 42]. With the recent developments in the area of artificial intelligence, artificial
intelligence-based controllers have started to be developed for different nonlinear systems
in order to eliminate the computational burden of SMC [7, 13]. A neural network
controller with a learning rule based on a sliding mode algorithm can be utilized to
ensure the computation of an unknown component of the equivalent control when there
are uncertainties regarding the plant. In addition to that, this controller has the quality
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of being robust in the face of parameter changes and external disruptions. In our previous
work [2], a novel neuro-sliding mode controller was suggested for a quadrotor that carries
a suspended payload. As an extension to that study, a similar controller structure was
developed for an interconnected quadrotor UAV system carrying a suspended payload.
The key contributions of this work are listed below:

1) In this work, a generalized structure for interconnected quadrotor UAVs system
is presented. A detailed nonlinear model of the system is derived. The system is
modeled in such a way that the payload can be transported using any number of
UAVs. In the suspended payload transportation scenario, it is assumed that one
of the UAVs initially has the desired trajectory. The rest of the UAV’s desired
trajectories are calculated through our geometric approach. To do so, the desired
angles of each quadrotor are derived first. Then, the desired x and y positions of
the payload and each UAV are calculated. Once the carrying angles and desired
trajectories are obtained, interconnected forces are derived the forces acting on the
payload.

2) Furthermore, a novel neuro-sliding mode controller is proposed. With the help of
the neural network component, the controller can successfully control the system
without knowing the quadrotor dynamics and can update the system dynamics
against uncertainties that change over time with the updated learning structure.
The incorporation of a neural network component into the control framework min-
imizes control input value and chattering while improving error performance.

3) To ensure the closed-loop stability of the multi-quadrotor load transportation sys-
tem, a comprehensive study of the system’s stability is offered.

In order to show the efficiency of the proposed controller, the designed system was
first controlled with an SMC, assuming the dynamics are known. Then it was controlled
with an updated SMC, assuming the dynamics were unknown. Finally, the system was
controlled with the proposed controller, and simulation results were compared.

The article is structured as follows: Information on quadrotor dynamics, neural net-
works, and interconnected quadrotor UAVs system dynamics, respectively, is given in
Section 2. The control structures proposed in the study are developed in section 3.
In order to show the effectiveness of the developed controller, simulations are made in
section 4. Conclusions are given in section 5.

Next, a short background and problem formulation is given.

2. BACKGROUND AND PROBLEM FORMULATION

This chapter begins with a basic overview of quadrotor dynamics and neural networks.
Then, a problem formulation on the interconnected dynamics of UAVs carrying payloads
is presented, as is the derivation of desired trajectories for each UAV.

2.1. Quadrotor dynamics

In order for the quadrotor to move along the desired trajectory, symmetrically placed
rotors are used. For this purpose, four input signals have been designated. The vertical
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motion of the quadrotor in the z-axis is controlled by the u1 input. It provides upward
or downward movement by boosting or reducing the speeds of all propellers at the same
rate. The u2 input generates torque along the x-axis by increasing or decreasing the
speed of the left propeller while also increasing or decreasing the speed of the right
propeller by the same amount. Thus, the roll motion is acquired along the x-axis. The
pitch motion is obtained by u3 input. The u3 input changes the speed of the rear
and front propellers, causing motion in the y-axis. The yaw motion along the z-axis is
obtained with u4 input by reducing or boosting the speeds of the left and right propellers
simultaneously, while boosting or reducing the speeds of the rear and front propellers.

Since the rotors are assumed to be positioned symmetrically, as shown in Figure 1,
aerodynamic torques and gyroscopic effects are assumed to cancel each other out in
flight. To denote the position and attitude of a quadrotor, two reference frames are
specified. The earth frame states the position of the UAV’s center of gravity, given by
E{x, y, z}, and the body fixed frame, denoted by B{x, y, z}.

Fig. 1. Model of quadrotor.

Using Lagrange equations dynamical model of quadrotor could be obtained as [1]:

ẍ =
1

m
(cosφ sin θ cosψ + sinφ sinψ)u1 −

K1ẋ

m

ÿ =
1

m
(cosφ sin θ sinψ + sinφ cosψ)u1 −

K2ẏ

m

z̈ =
1

m
(cosφ cos θ)u1 − g −

K3ż

m

φ̈ = θ̇ψ̇
Iy − Iz
Ix

+
Jr
Ix

Ωr θ̇ +
l

Ix
u2 −

K4l

Ix
φ̇ (1)

θ̈ = ψ̇φ̇
Iz − Ix
Iy

+
Jr
Iy

Ωrφ̇+
l

Iy
u3 −

K5l

Iy
θ̇
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ψ̈ = φ̇θ̇
Ix − Iy
Iz

+
1

Iz
u4 −

K6

Iz
ψ̇

where (φ, θ, ψ) are roll, pitch and yaw angles respectively; (x, y, z) are representing
UAV’s positions in three axes; m is the mass of quadrotor; g is acceleration of gravity;
l is the distance to the propellers from the center of the quadrotor; Ix, Iy, Iz are the
inertia with respect to each axes; Jr is the inertia of the propeller; Ki (i =1, 2, , 6) are
the drag coefficients, and ui (i = 1, 2, 3, 4) are the virtual inputs defined as:

u1 = (F1 + F2 + F3 + F4)

u2 = (−F2 + F4)

u3 = (−F1 + F3) (2)

u4 =
d (−F1 + F2 − F3 + F4)

b

where rotor thrusts are represented as Fi(i = 1, 2, 3, 4), b is the lift coefficient, d is the
force-to-moment scaling vector.

2.2. Neural network

Fig. 2. Neural network structure.

In this work, a two-layer neural network (NN) structure as shown in Figure 2 is
used to estimate uncertain dynamics. The neural network component learns the system
dynamics. Thus, it reduces the control input amplitude significantly while eliminating
the chattering effect. The first layer is hidden layer that contains adjustable hidden
weights, W ∈ R(Nh×ko), and the second layer consists of randomly determined constants,
N̄ ∈ R(ki×Nh) where ki is input count and ko is output count. Nh represents the
number of neurons in the hidden layer. Estimation function, f(x), can be given as
f (x) = WTσ

(
N̄Tx

)
+ ε where ε is the bounded NN estimation error that satisfies
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‖ε‖ < εM , and σ (•) : Ra → RL is the activation function for the hidden layer. Because
the input-layer weights N̄ ∈ Rki×Nh are randomly chosen, for any input x, the estimation
is viable; hence the activation function,σ (x) = σ

(
N̄Tx

)
, establishes a stochastic base in

the compact set S [26]. As an activation function a tangent hyperbolic function is chosen
in this study. It is also assumed that target weights are limited to a known positive value
WM satisfying ‖W‖F < WM on any compact subset of Rn [10]. Moreover, ‖•‖ and ‖•‖F
are considered as the vector and Frobenius norm respectively [26].

Definition 2.1. (semi-globally uniformly ultimately bounded (SGUUB)) Any
equilibrium point xe is said to be SGUUB if there is an area around the origin with a
radius r where S (0, r) = Sr ⊂ Rn so that for all x0 ∈ Rn, there exists a bound B > 0
and a time T (B, x0) such that ‖x (t)− xe‖ ≤ B for all t > t0 + T .

2.3. Formulation of desired trajectories

Fig. 3. Circular formation of quadrotors carrying a payload.

This study develops a model of interconnected quadrotor UAVs for transporting a
suspended payload. For this objective, a circular configuration, as illustrated in Figure
3, is designed for an N number of quadrotor UAVs with equal z-positions. The payload
is in the middle, and the quadrotors’ angles with regard to each other are equal. The
trajectory of one quadrotor is assumed to be known, and the remaining quadrotors
can compute their trajectories using the geometric technique provided below, using the
desired trajectory of the first quadrotor as a reference.

To calculate trajectories, the position of the first quadrotor identified with xdL, y
d
L in

x − y plain is assumed to be known. Let the distance of each quadrotor to payload in
x− y plain be Lxy since it will be depending on the cable length L. Desired Lxy can be
given as:
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Lxy = L sin(αd) (3)

where αd is desired α angle in x− z plain, as shown in Figure 4, given as:

αd = arccos

(
| zL − zP

L
|
)

(4)

Fig. 4. α and β angles respectively.

where zL is leader quadrotor’s z position and zP is z position of payload. The αL
d and

βL
d angles of leader quadrotor are known in order to establish a circular formation. βi

d

is desired angle of ith quadrotor in x− y plain and as it is shown in Figure 4 and it can
be calculated for each quadrotor as:

βd
i = βd

L +
360(i− 1)

N
∀i = 2, 3, . . . , N. (5)

Then to find the position of each quadrotor in x−y plain first the position of payload
can be calculated by using leader quadrotor position as:

xdP = xdL + Lxy cos(βd
L)

ydP = ydL + Lxy sin(βd
L)

(6)

where xdP and ydP are desired x and y positions of payload. After calculating the position
of payload, xdi and ydi coordinates for ith quadrotor in x− y plain can be generalized as:

xdi = xdp + Lxy cos(βd
i )

ydi = ydp + Lxy sin(βd
i ).

(7)
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2.4. Formulation of interconnected dynamics

Once the trajectories of each quadrotor are calculated, the forces acting on each one can
be obtained and the total dynamics of the system can be deduced. To obtain forces, the
payload is modelled as a three-dimensional point pendulum mass, as shown in Figure 5.
Moreover, following presumptions formed the basis of the payload model:

1) Payloads can only tilt in two directions since the payload is not allowed to spin
around the cable axis.

2) A stiff, weightless, nonelastic cable is used to sustain the load.

3) As the center of mass of the quadrotor is located at the cable joint, the tensile
stress of the cable does not effect the rotation of the quadrotor.

Using angles in equations (4) and (5) we can define forces acting on each axis on each
quadrotor as:

Fxi =

N∑
j=1,j 6=i

U2j cos(βj (t))

Fyi =

N∑
j=1,j 6=i

U3j sin(βj (t))

Fzi =

 N∑
j=1,j 6=i

[U1j sin(αj (t))]

−mLg

(8)

where, U1j , U2j , U3j are control inputs of the jth UAV on x, y and z directions, respec-
tively, mL is payload mass, g is gravity force and Fxi, Fyi, Fzi are total forces acting
on each quadrotor on corresponding axis. Combining these interconnection forces with
quadrotor dynamics in equation (1) the dynamical equation of the ith quadrotor can be
given as:

Fig. 5. The interconnected system.
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mẍi = (cosφi sin θi cosψi + sinφi sinψi)u1i −K1ẋi − Fxi

mÿi = (cosφi sin θi sinψi + sinφi cosψi)u1i −K2ẏi − Fyi

mz̈i = (cosφi cos θi)u1i −mg −K3żi + Fzi

φ̈i = θ̇iψ̇i
Iy − Iz
Ix

+
Jr
Ix

Ωriθ̇i +
l

Ix
u2i −

K4l

Ix
φ̇i (9)

θ̈i = ψ̇iφ̇i
Iz − Ix
Iy

+
Jr
Iy

Ωriφ̇i +
l

Iy
u3i −

K5l

Iy
θ̇i

ψ̈i = φ̇iθ̇i
Ix − Iy
Iz

+
1

Iz
u4i −

K6

Iz
ψ̇i.

Note that the interconnected dynamics affect only the position dynamics of quadro-
tors since the cables are attached to the quadrotors’ mass centers. Therefore, intercon-
nections do not have any effect on the dynamics of quadrotors’ angular dynamics.

Next controller designs are given.

3. CONTROLLER DESIGN

In this section, the proposed controller is designed. The controller is developed in three
steps. First, an SMC is developed with the assumption that the dynamics are known.
Next, an SMC with unknown dynamics is derived, and finally, the proposed controller
is given in the presence of uncertain dynamics. The uncertain dynamics are learned
through neural network components so that both the chattering effect is reduced and
the system is successfully controlled without fully knowing the dynamics of the controlled
system. Moreover, with the updated learning structure, it can update system dynamics
successfully even if there are uncertainties that change over time. The proposed neuro-
sliding mode control structure is given in Figure 6.

Fig. 6. Overall structure of the system.
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3.1. Sliding mode controller design with known dynamics

In the first stage of the controller design, a classical SMC design will be realized by
making the assumption that the dynamics of all of the quadrotors in the system as well as
the dynamics added by the payload on the quadrotors are fully known. This will allow a
comparison of how chattering effects occur in control signals and how unknown dynamics
affect reference tracking when the effect of unknown dynamics is considered in a classical
SMC design. It can also be easily observed that even assuming the dynamics are known,
the magnitudes of the control signals will be unacceptably high. In order to perform
the controller design more conveniently dynamics in equation (9) are transformed to the
following form [43]; 

z̈i = f1i + g1iu1i{
ẍi = f2i + g2iu2i

φ̈i = f3i + g3iu2i{
ÿi = f4i + g4iu3i

θ̈i = f5i + g5iu3i

ψ̈i = f6i + g6iu4i

(10)

where

f1i = −g − K3żi
m

+
Fzi

m
, g1i =

cosφi cos θi
m

f2i =
(cosφi sin θi cosψi + sinφi sinψi)u1i

m
− K1ẋi

m
, g2i = 0

f3i =

(
θ̇iψ̇i (Iy − Iz) + Jr θ̇iΩri −K4lφ̇i

)
Ix

, g3i =
l

Ix

f4i =
(cosφi sin θi sinψi + sinφi cosψi)u1i

m
− K2ẏi

m
, g4i = 0 (11)

f5i =

(
ψ̇iφ̇i (Iz − Ix) + Jrφ̇iΩri −K5lθ̇i

)
Iy

, g5i =
l

Iy

f6i =

(
φ̇iθ̇i (Ix − Iy)−K6ψ̇i

)
Iz

, g6i =
1

Iz
.

The sliding surface functions can be generalized as:

sk = ak1 (q̇k1d − q̇k1) + ak2 (qk1d − qk1) + ak3 (q̇k2d − q̇k2) + ak4 (qk2d − qk2) (12)

where qk is any arbitrary variant and qkd is the desired value of qk, the coefficients
akj(j, k = 1, 2, 3, 4) were acquired in our previous study [2] in detail. With the right
coefficients, the sliding surface functions can be given as [43]:
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s1i = a11
(
żdi − żi

)
+ a12

(
zdi − zi

)
s2i = a21

(
ẋdi − ẋi

)
+ a22

(
xdi − xi

)
+ a23

(
φ̇di − φ̇i

)
+ a24

(
φdi − φi

)
s3i = a31

(
ẏdi − ẏi

)
+ a32

(
ydi − yi

)
+ a33

(
θ̇di − θ̇i

)
+ a34

(
θdi − θi

)
(13)

s4i = a41

(
ψ̇d
i − ψ̇i

)
+ a42

(
ψd
i − ψi

)
where, a11,a12,a41,a42 > 0, a13 = a14 = a43 = a44 = 0. By taking the derivatives of
sliding manifolds and inserting the dynamics from equation (11) they yield as:

ṡ1i = a11
(
z̈di − f1i + g1iu1i

)
+ a12

(
żdi − żi

)
ṡ2i = a21

(
ẍdi − f2i + g2iu2i

)
+ a22

(
ẋdi − ẋi

)
+ a23

(
φ̈di − f3i + g3iu2i

)
+ a24

(
φ̇di − φ̇i

)
ṡ3i = a31

(
ÿdi − f4i + g4iu3i

)
+ a32

(
ẏdi − ẏi

)
(14)

+ a33

(
θ̈di − f5i + g5iu3i

)
+ a34

(
θ̇di − θ̇i

)
ṡ4i = a41

(
ψ̈d
i − f6i + g6iu4i

)
+ a42

(
ψ̇d
i − ψ̇i

)
.

To stabilize the sliding surfaces, following theorem is provided.

Theorem 3.1. (Sliding mode controller design with known dynamics) By tak-
ing the sliding surface functions in equation (14) let the controllers be:

u1i =
1

a11g1i

{
a11
(
z̈di − f1i

)
+ a12

(
żdi − żi

)
+ η1is1i

}
u2i =

1

a21g2i + a23g3i

a21
(
ẍdi − f2i

)
+ a22

(
ẋdi − ẋi

)
+ a23

(
φ̈di − f3i

)
+ a24

(
φ̇di − φ̇i

)
+ η2is2i


u3i =

1

a31g4i + a33g5i

a31
(
ÿdi − f4i

)
+ a32

(
ẏdi − ẏi

)
+ a33

(
θ̈di − f5i

)
+ a34

(
θ̇di − θ̇i

)
+ η3is3i

 (15)

u4i =
1

a41g6i

{(
ψ̈d
i − f6i

)
+ a42

(
ψ̇d
i − ψ̇i

)
+ η4is4i

}
with i index of quadrotors and ηki > 0 ∀k = 1, 2, 3, 4 being constant parameters, all
sliding surfaces are asymptotically stable.

P r o o f . Let the Lyapunov function for ith quadrotor be as:

Vi =

4∑
k=1

s2ki
2

(16)
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and by taking the derivative of equation (16) :

V̇i =

4∑
k=1

skiṡki

= s1i
{
a11
(
z̈di − f1i + g1iu1i

)
+ a12

(
żdi − żi

)}
+ s2i

a21
(
ẍdi − f2i + g2iu2i

)
+ a22

(
ẋdi − ẋi

)
+ a23

(
φ̈di − f3i + g3iu2i

)
+ a24

(
φ̇di − φ̇i

) (17)

+ s3i

a31
(
ÿdi − f4i + g4iu3i

)
+ a32

(
ẏdi − ẏi

)
+ a33

(
θ̈di − f5i + g5iu3i

)
+ a34

(
θ̇di − θ̇i

)
+ s4i

{
a41

(
ψ̈d
i − f6 + g6iu4i

)
+ a42

(
ψ̇d
i − ψ̇i

)}
.

Use the controller signals in equation (15) into equation (17) and obtain:

V̇i =

4∑
k=1

−ηkis2ki. (18)

Therefore, the system is asymptotically stable. This concludes the proof. �

3.2. Sliding mode controller design with unknown dynamics

In this section a sliding mode controller with unknown dynamics is derived.

Theorem 3.2. (Sliding mode controller design with unknown dynamics) To sup-
press the unknown dynamics a sign function can be added to sliding surfaces. By taking
sliding surfaces derivatives ṡki = −ηski − εkisign(ski), (k = 1, 2, 3, 4) where εki > 0,
ηki > 0 are positive constants, the controllers can be derived as:

u1i =
1

a11g1i

{
a11
(
z̈di − f1i

)
+ a12

(
żdi − żi

)
+ η1is1i + ε1i sign(s1i)

}
u2i =

1

a21g2i + a23g3i


a21
(
ẍdi − f2i

)
+ a22

(
ẍdi − ẋi

)
+ a23

(
φ̈di − f3i

)
+ a24

(
φ̇di − φ̇i

)
+ η2is2i + ε2i sign(s2i)

 (19)

u3i =
1

a31g4i + a33g5i


a31
(
ÿdi − f4i

)
+ a32

(
ẏdi − ẏi

)
+ a33

(
θ̈di − f5i

)
+ a34

(
θ̇di − θ̇i

)
+ η3is3i + ε3i sign(s3i)


u4i =

1

a41g6i

{(
ψ̈d
i − f6i

)
+ a42

(
ψ̇d
i − ψ̇i

)
+ η4is4i + ε4i sign(s4i)

}
.

Applying the controllers to the system with unknown dynamics, all sliding surfaces
are asymptotically stable.
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P r o o f . Let the Lyapunov function for one quadrotor be as:

Vi =

4∑
k=1

s2ki
2

(20)

and by taking the derivative just as it was taken in equation (17) and using controllers
equation (19) into equation (20) gives:

V̇i =

4∑
k=1

skiṡki

=

4∑
k=1

ski(a11fki − ηkiski − εki sign(ski)) (21)

=

4∑
k=1

skia11fki − ηkis2ki − εki |ski|.

Hence for any εki > 0, ηki > 0 positive constants derivative of equation (21):

V̇i =

4∑
k=1

|ski| (a11fki − ηkiski − εki) ≤ 0. (22)

If εki > |a11fki| then the system is asymptotically stable. This concludes the proof.
�

3.3. Neuro-sliding mode controller design

For the proposed controller design, quadrotor dynamics with payload that were given in
equation (10) are supposed to be unknown and for estimating the unknown dynamics
neural network estimation is used. The unknown dynamics fji ∀j = 1, 2, 3, 4, 5, 6 can
be given as:

fji = ΘT
jiσ
(
HT

ji$ji

)
+ χji (23)

where i is number of quadrotors, Θji ∈ R2×h is the bounded desired NN weights that

satisfying kn

2 ‖Θji ‖2 ≤ ΘM with ΘM > 0 a constant, kn > 0 is the NN learning rate and
will be defined later, h is the hidden layer neuron number, σ (Hji$ji) is the base function
with HT

ji ∈ Rh×n is the mapping between the inputs and hidden-layer neurons ,n is the
number of inputs to the NN, χji is the bounded NN reconstruction error satisfying
1
2χ

2
ji ≤ χM , with χM being a positive constant.

Remark 3.3. Since the uncertain nonlinear dynamics of interconnected system, fji
given in equation (23) will be functions of both the dynamics of the ith UAV and its
neighbours, therefore the neural network inputs $ji will consist of the states of both the
ith UAV and its neighbours.



NSCM Design for quadrotor payload system 683

The unknown weights could be approximated as Θ̂ji and approximated uncertain
dynamics could be written as:

f̂ji = Θ̂T
jiσ
(
HT

ji$ji

)
. (24)

Estimation error of the NN weight could be written as Θ̃ji = Θji − Θ̂ji and the

estimation error dynamics could be defined as ˙̃Θji = − ˙̂
Θji. Then, estimated dynamics

can be defined as:

f̃ji = fji − f̂ji
= ΘT

jiσ
(
HT

ji$ji

)
+ χji − Θ̂T

jiσ
(
HT

ji$ji

)
(25)

= Θ̃T
jiσ
(
HT

ji$ji

)
+ χji.

with defined estimated dynamic the controllers in equation (15) can be rearranged as:

u1i =
1

a11

{
a11

(
z̈di − f̂1i

)
+ a12

(
żdi − żi

)
+ η1is1i

}

u2i =
1

a21 + a23


a21

(
ẍdi − f̂2i

)
+ a22

(
ẋdi − ẋi

)
+ a23

(
φ̈di − f̂3i

)
+ a24

(
φ̇di − φ̇i

)
+ η2is2i


u3i =

1

a31 + a33


a31

(
ÿdi − f̂4i

)
+ a32

(
ẏdi − ẏi

)
+ a33

(
θ̈di − f̂5i

)
+ a34

(
θ̇di − θ̇i

)
+ η3is3i

 (26)

u4i =
1

a41

{(
ψ̈d
i − f̂6i

)
+ a42

(
ψ̇d
i − ψ̇i

)
+ η4is4i

}
.

Theorem 3.4. (Neuro-sliding mode controller design) Given the sliding surface
dynamics in equation (14) let the controllers be as in equation (25) and let adaptation
law for estimated weights be as:

˙̂
Θji = −knΘ̂ji + sjiaji1σ (Hji$ji)∀j = 1, 2, 3, 4. (27)

Then, all sliding surface functions and NN weight estimation errors will be SGUUB.

P r o o f . Let the Lyapunov function for sliding surface functions be:

Vi =

4∑
j=1

(
1

2
sji

2 +
1

2

(
Θ̃T

jiΘ̃ji

))
. (28)
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And by taking the derivative of equation (28) :

V̇i =

4∑
j=1

(
sjiṡji + Θ̃T

ji
˙̃Θji

)
= s1iṡ1i + s2iṡ2i + s3iṡ3i + s4iṡ4i

+ Θ̃T
1i

˙̃Θ1i + Θ̃T
2i

˙̃Θ2i + Θ̃T
3i

˙̃Θ3i + Θ̃T
4i

˙̃Θ4i

= s1i
(
a11
(
z̈di − f1i + g1iu1i

)
+ a12

(
żdi − żi

))
+ s2i

(
a21
(
ẍdi − f2i + g2iu2i

)
+ a22

(
ẋdi − ẋi

)
+a23

(
φ̈di − f3i + g3iu2i

)
+ a24

(
φ̇di − φ̇i

))

+ s3i

(
a31
(
ÿdi − f4i + g4iu3i

)
+ a32

(
ẋdi − ẋi

)
+a33

(
θ̈di − f5i + g5iu3i

)
+ a34

(
θ̇di − θ̇i

))
+ s4i

(
a41

(
ψ̈d
i − f6i + g6iu4i

)
+ a42

(
ψ̇d
i − ψ̇i

))
− Θ̃T

1i
˙̂
Θ1i − Θ̃T

2i
˙̂
Θ2i − Θ̃T

3i
˙̂
Θ3i − Θ̃T

4i
˙̂
Θ4i

(29)

using the controllers in equation (26) into equation (29) yields:

V̇i = −η1is21i − η2is22i − η3is23i − η4is24i
+ s1ia11f̃1i + s2ia21f̃2i + s2ia23f̃3i + s3ia31f̃4i + s3ia33f̃5i + s4ia41f̃6i

− Θ̃T
1i

˙̂
Θ1i − Θ̃T

2i
˙̂
Θ2i − Θ̃T

3i
˙̂
Θ3i − Θ̃T

4i
˙̂
Θ4i

V̇i = −
4∑

j=1

ηjis
2
ji +

4∑
j=1

sjiaj1

(
Θ̃T

jiσ
(
HT

ji$ji

)
+ χji

)
−

4∑
j=1

Θ̃T
ji

˙̂
Θji

= −
4∑

j=1

ηjis
2
ji +

4∑
j=1

sjiaj1

(
Θ̃T

jiσ
(
HT

ji$ji

))
+

4∑
j=1

sjiaj1χji −
4∑

j=1

Θ̃T
ji

˙̂
Θji

(30)

by implementing the update laws in equation (27) into equation (30) than we can get:

V̇i = −
4∑

j=1

ηjis
2
ji +

4∑
j=1

sjiaj1

(
Θ̃T

jiσ
(
HT

ji$ji

))
+

4∑
j=1

sjiaj1χji

−
4∑

j=1

Θ̃T
ji

(
−knΘ̂ji + sjiaj1σ (Hji$ji)

)

= −
4∑

j=1

ηjis
2
ji +

4∑
j=1

sjiaj1

(
Θ̃T

jiσ
(
HT

ji$ji

))
+

4∑
j=1

sjiaj1χji + kn

4∑
j=1

Θ̃T
jiΘ̂ji (31)

−
4∑

j=1

sjiaj1Θ̃T
ji (σ (Hji$ji))
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= −
4∑

j=1

ηjis
2
ji +

4∑
j=1

sjiaj1χji + kn

4∑
j=1

Θ̃T
ji

(
Θji − Θ̃ji

)

= −
4∑

j=1

ηjis
2
ji +

4∑
j=1

sjiaj1χji − kn
4∑

j=1

∥∥∥Θ̃ji

∥∥∥2 + kn

4∑
j=1

Θ̃T
jiΘji .

Lemma 3.5. (Qian and Lin in [35]) The following Young’s inequality is true for a, b ≥ 0
and p, q > 1 such that 1

p + 1
q = 1 :

ab ≤ ap

p
+
bq

q
. (32)

Following inequalities hold from Young’s inequality in Lemma 3.5:

kn

4∑
j=1

Θ̃T
jiΘji ≤

kn
2

4∑
j=1

∥∥∥Θ̃ij

∥∥∥2 +
kn
2

4∑
j=1

‖Θji ‖2

4∑
j=1

sjiaji1χji ≤
1

2

4∑
j=1

s2jiaji1 +
1

2

4∑
j=1

aji1χ
2
ji

(33)

by using equation (33) and the upper bounds of both NN approximation errors and the
NN weight estimation errors, respectively equation (31) can be rewritten as:

V̇i = −
4∑

j=1

ηjis
2
ji +

1

2

4∑
j=1

s2jiaj1 +
1

2

4∑
j=1

aj1χ
2
ji − kn

4∑
j=1

∥∥∥Θ̃ji

∥∥∥2
+
kn
2

4∑
j=1

∥∥∥Θ̃ji

∥∥∥2 +
kn
2

4∑
j=1

‖Θji ‖2 (34)

= −
4∑

j=1

(
ηji −

aj1
2

)
s2ji −

kn
2

4∑
j=1

∥∥∥Θ̃ji

∥∥∥2 + χM + ΘM .

Provided with the controller gain satisfies ηji >
aj1

2 ∀j = 1, 2, 3, 4 the stability bounds
can be given as;

−
4∑

j=1

(
ηji −

aj1
2

)
s2ji + χM + ΘM < 0 ⇒ |sji| >

√
χM + ΘM(
ηji − aj1

2

) (35)

or − kn
2

4∑
j=1

∥∥∥Θ̃ji

∥∥∥2 + χM + ΘM < 0⇒
∥∥∥Θ̃ji

∥∥∥ >
√

2 (χM + ΘM )

kn
. (36)

Hence, the NN weight estimation errors and sliding surface functions will be SGUUB.
This concludes the proof. �
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Remark 3.6. Using a neural network component in the control structure technique
reduces control input and chattering while optimizing error performance of trajectory
tracking.

Next, simulation results are given and evaluated.

4. NUMERICAL SIMULATIONS AND RESULTS

To verify the effectiveness of the proposed controller, an interconnected system consists of
three quadrotor UAVs that transport a suspended payload was modeled and simulations
were carried out in MATLAB. As a solver, ode45 was used, and simulation time for all
simulations was 120 seconds. For this purpose, three simulations were carried out. First,
an SMC was applied to the system under the assumption that all dynamics were known.
In a second simulation, an SMC with unknown dynamics was applied to the system. In
the last simulation, a neuro-sliding mode controller was applied to the system.

The parameters of each quadrotor are chosen as:

m = 1.1kg,mL = 0.5kg, g = 9.8m/s2, Jr = 0.2Ns2/rad, L = 4m, l = 0.21m,

Ix = Iy = 1.22Ns2/rad, Iz = 2.22Ns2/rad,K1 = K2 = K3 = 0.1Ns/rad,

b = 5Ns2,K4 = K5 = K6 = 0.12Ns/rad, d = 2N/ms2.

Initial conditions selected as:

X1(0)= 0, X2(0) = -3, X3(0) = 2, Y1(0) = 5, Y2(0) = 3.5, Y3(0) = 2,

Z1(0) = 0, Z2(0) = 0, Z3(0) = 0, φi(0) = 0, θi(0) = 0, Ψi(0) = 0, i=1,2,3.

a21, a22, a23, a24, a31, a32, a33, a34 controller gains were obtained in detail and they can
be found in our previous work [2] and the rest of the gains are selected as:

a11 = 2, a12 = 2, a41 = 2, a42 = 2, a13 = a14 = a43 = a44 = 0.

For quadrotors the desired trajectories are chosen as:

X1d= t,X2d= t-
√

3,X3d = t+
√

3, Y1d = t, Y2d= t-3, Y3d = t-3,

Z1d(0) = K, Z2d(0) = K, Z3d(0) = K, K =8 m,φid = 0, θid = 0,Ψid = 0.5, i=1,2,3.

The desired angles for payload are selected as:

αd
1 = αd

L = π/6, βd
1 = βd

L = π/2, βd
2 =

7π

6
, βd

3 =
11π

6
.

During the simulations, the initial values of neural network weights are set to zero
and the neurons of hidden layer are randomly selected.

Assumption 4.1. The simulations included a standard SMC structure for comparison.
A saturation function defined as follows is used in instead of the sign function in the SMC
structure to lessen the chattering effect and, consequently, the computational burden.

sat(x) =

{
x/κ,

sign(x),

|x| ≤ κ
|x| > κ

(37)

where κ > 0, and it was taken to be κ = 0.5 in the simulations.
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Remark 4.2. It is worth noting that the above assumption was only used for classical
SMC in order to perform a faster simulation, not for the proposed controller.

First simulation was carried out for SMC with the presumption that all dynamics of
the system are known. Position errors of quadrotors are given in Figures 7, 8 and 9.

Fig. 7. x position errors of UAVs for SMC with known dynamics.

Fig. 8. y position errors of UAVs for SMC with known dynamics.

Fig. 9. z position errors of UAVs for SMC with known dynamics.

Even assuming that the dynamics are known, it is seen that the classical SMC cannot
prevent noticeable errors in position tracking. For x positions errors occur between
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0.84m to 1m for quadrotors. Looking at the y position errors, it is seen that the second
and third quadrotors have tracking errors of around 0.5 m, although the error of the
first quadrotor is close to zero. On z axes, quadrotors settle to desired values. In the
beginning, the system required very high u1i controller input values of about 250 N, as
can be observed in Figure 10. After around 10 seconds, the input value has stabilized
at around 16 N. Despite having small values, controller inputs u2i and u3i demonstrate
high chattering as it is accepted from classical SMC shown in Figures 11 and 12, and u4i
controller input values are around 55 N as shown in Figure 13. As it can be understood
from these figures, classical SMC needs very high input signal values, especially at the
beginning, and a chattering effect is inevitable in control signals.

Fig. 10. u1i control inputs for SMC with known dynamics.

Fig. 11. u2i control inputs for SMC with known dynamics.

Fig. 12. u3i control inputs for SMC with known dynamics.
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Fig. 13. u4i control inputs for SMC with known dynamics.

A second simulation was carried out for an SMC with unknown dynamics. In this case,
controllers have been designed by taking into account the unknown dynamics that will
be encountered in real applications. Figures 14, 15 and 16 show quadrotor position errors
in the x, y, and z axes. When the errors along the x-axis are analyzed, it is discovered
that the second and third quadrotors have significant errors of around 0.86 m, whilst the
first quadrotor follows the reference with an acceptable error of approximately 0.1 m.
Similarly, in the y-axis, the first quadrotor can follow the reference with a small error,
while the second and third quadrotors can follow the reference with an error of around
0.4 m. In addition, in order for the quadrotors to settle into the reference trajectories in
the x and y axes because of the effect of unknown dynamics, it takes a significant amount
of extra time when compared to the prior simulation.A deviation of around 0.6 meters
occurs in the z-axis for each of the three quadrotors. The changes in control signals are
given in Figures 17, 18 and 19. It is seen that the chattering effects seriously distort the
control signals due to the unknown dynamics. u1i controller input values decreased to
around 50 N from 250 N compared to the first simulation. But as it can be observed
from the figure, a very high chattering is generated in control signals. As in u1i, despite
the fact that the inputs u2i and u3i are small, undesirable high sparks are observed in
the control inputs. u4i controller input values are around 110 N, as given in Figure 20. It
is also clear that the u4i controller input values have doubled in this simulation. These
simulation results clearly show how unknown dynamics can create negative effects in the
controlled system. In order to eliminate these negativities as much as possible, the final
simulation will show the contribution of the proposed controller in this study.

Fig. 14. x position errors of UAVs for SMC with unknown dynamics.
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Fig. 15. y position errors of UAVs for SMC with unknown dynamics.

Fig. 16. z position errors of UAVs for SMC with unknown dynamics.

Fig. 17. u1i control inputs for SMC with unknown dynamics.

In the third simulation, neuro-SMC, the controller proposed in the study, was ap-
plied to the system. The changes in the position errors of the quadrotors in the three
axes is given in Figures 21, 22 and 23. As can be clearly observed from the figures, the
errors in the reference tracking of the three quadrotors in the x, y and y axes reach the
neighborhood of zero asymptotically with the proposed controller.
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Fig. 18. u2i control inputs for SMC with unknown dynamics.

Fig. 19. u3i control inputs for SMC with unknown dynamics.

Fig. 20. u4i control inputs for SMC with unknown dynamics.

Variations in errors of quadrotor angles are given in Figures 24, 25 and 26. It can be
observed from the figures that the variations in the angles are also very small.

Control inputs for the proposed controller are given in Figures 27, 28 and 29. It is
clear that the high chattering effects that were brought on by unknown dynamics in
the earlier simulation are swiftly eradicated owing to the neural network component
that is included in the suggested controller. Until the neural network learns the system
dynamics, it is seen that a certain amount of unwanted sparks can occur in the control
signals. However, when the dynamics are learned, it is seen that the control signals
quickly settle to nominal values. It is also seen that the amplitudes of sparks in the
control signals are significantly reduced compared to the chattering effect. u1i controller
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Fig. 21. x position errors of UAVs for neuro-SMC with unknown

dynamics.

Fig. 22. y position errors of UAVs for neuro-SMC with unknown

dynamics.

Fig. 23. z position errors of UAVs for neuro-SMC with unknown

dynamic.

input values are less than 40N in the beginning. As it can be observed from the figure
chattering is reduced significantly. As in u1i , inputs u2i and u3i are also small and
chattering effects decreased. u4i controller input values are around 40 N as shown
in Figure 30. The chattering continues until the neural network learns the unknown
dynamics. After the learning process is completed, the chattering in the control signals
disappears. This clearly shows how the proposed controller successfully counteracts the
chattering effect of classical SMC with known and unknown dynamics as presented in
the first two simulations.
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Fig. 24. Errors of roll angles of UAVs for neuro-SMC with unknown

dynamics.

Fig. 25. Errors of pitch angles of UAVs for neuro-SMC with

unknown dynamics.

Fig. 26. Errors of yaw angles of UAVs for neuro-SMC with unknown

dynamics.

In Figure 31 quadrotors trajectories are plotted in three dimensions. In Figure 32,
the convergence rates for neural network neurons are seen. As shown in the figure,
they are successfully converging to a non-zero value. While the sliding mode controller
provide robustness during the neural network estimation period, neural network based
adaptive scheme provides better steady state response. Therefore, neural network rates
will change until quadrotors reach steady state and after that point, they converge to a
small value showing that estimation is completed.
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Fig. 27. u1i control inputs for neuro-SMC with unknown dynamics.

Fig. 28. u2i control inputs for neuro-SMC with unknown dynamics.

Fig. 29. u3i control inputs for neuro-SMC with unknown dynamics.

5. CONCLUSION

A neuro-sliding mode controller was proposed to control an interconnected quadrotor
UAV’s system transporting a suspended payload. After obtaining the mathematical
model of the load-carrying system with three quadrotors, it was generalized and brought
to the form to be used for n-quadrotors. Three different simulations were carried out
to display the effectiveness of the proposed controller. First, the system was controlled
with an SMC with the assumption that all the system dynamics were known. In this
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Fig. 30. u4i control inputs for neuro-SMC with unknown dynamics.

Fig. 31. 3D trajectories of UAVs for neuro-SMC with unknown

dynamics.

Fig. 32. Convergence rates of neural network weights.

case, although no chattering effect was observed in the control signals, the values of the
control signals were found to be very large. In addition, errors were observed in the
positional trajectories. Secondly, an SMC was designed with unknown dynamics. In
this simulation, as well as errors in trajectory tracking in all three axes due to the effects
of unknown dynamics, serious chattering effects were observed in the control signals.
In the third and final simulation, the proposed controller neuro-SMC was applied to
the system. As it can be observed from the results, while the quadrotors follow the
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desired trajectories with high accuracy, a significant improvement has been achieved in
the control signals.

Future work includes investigating different sliding surface functions to get a better
the robustness of the sliding mode controller part in the proposed controller and applying
various artificial intelligence algorithms that can be alternatives to the neural network
structure. In addition, formation measurement may be an intriguing area for future
research since it might be imprecise and noisy, making it challenging for neural network
components to learn the unknown dynamics.

(Received November 24, 2022)
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