Kybernetika 58 no. 6, 863-882, 2022

A principal topology obtained from uninorms

Funda Karaçal and Tuncay KöroğluDOI: 10.14736/kyb-2022-6-0863

Abstract:

We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.

Keywords:

uninorm, bounded lattice, principal topology, closure operator

Classification:

03E72, 03B52, 06B30, 06F30, 08A72, 54A10

References:

  1. P. Alexandroff: Diskrete R\H{a}ume. Mat. Sb. 2 (1937), 501-518.   CrossRef
  2. F. G. Arenas: Alexandroff spaces. Acta Math. Univ. Comenianae 68 (1999), 17-25.   CrossRef
  3. E. Aşıcı and F. Karaçal: On the T-partial order and properties. Inform. Sci. 267 (2014), 323-333.   DOI:10.1016/j.ins.2014.01.032
  4. M. Baczyński and B. Jayaram: Fuzzy Implications. Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008.   CrossRef
  5. G. Birkhoff: Lattice Theory. Third edition. Providence 1967.   CrossRef
  6. D. Dubois and H. Prade: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston 2000.   CrossRef
  7. D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121.   DOI:10.1016/0020-0255(85)90027-1
  8. O. Echi: The category of flows of Set and Top.. Topology Appl. { mi 159} (2012), 2357-2366.   DOI:10.1016/j.topol.2011.11.059
  9. Ü. Ertuğrul, F. Karaçal and R. Mesiar: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.   DOI:10.1002/int.21713
  10. J. Fodor, R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427.   CrossRef
  11. L. Gang and L. Hua-Wen: On properties of uninorms locally internal on the boundary. Fuzzy Sets Systems 332 (2018), 116-128.   DOI:10.1016/j.fss.2017.07.014
  12. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, 2009.   CrossRef
  13. M. A. İnce, F. Karaçal and R. Mesiar: Medians and nullnorms on bounded lattices. Fuzzy Sets Systems 289 (2016),74-81.   DOI:10.1016/j.fss.2015.05.015
  14. M. A. İnce and F. Karaçal: t-closure operators. Int. J. General Systems 48 (2019), 139-156.   DOI:10.1080/03081079.2018.1549041
  15. F. Karaçal, {U}. Ertuğrul and M. N. Kesicioğlu: Generating methods for principal topologies on bounded latticies. Kybernetika 57 (2021), 714-736.   DOI:10.14736/kyb-2021-4-0714
  16. F. Karaçal and R. Mesiar: Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43.   DOI:10.1016/j.fss.2014.05.001
  17. J. L. Kelley: General Topology. Springer, New York 1975.   CrossRef
  18. M. N. Kesicioğlu, F. Karaçal and R. Mesiar: Order-equivalent triangular norms. Fuzzy Sets Systems 268 (2015), 59-71.   DOI:10.1016/j.fss.2014.10.006
  19. E. Khalimsky, R. Kopperman and P. R. Meyer: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36 (1990), 1-17.   DOI:10.1016/0166-8641(90)90031-v
  20. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer, Boston - Dordrecht - London 2000.   CrossRef
  21. R. Kopperman: The Khalimsky line in digital topology. In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20.   CrossRef
  22. V. A. Kovalevsky: Finite topology as applied to image analysis. CVGIP 46 (1989), 141-161.   DOI:10.1016/0734-189X(89)90165-5
  23. E. H. Kronheimer: The topology of digital images. Topology Appl. 46 (1992), 279-303.   DOI:10.1016/0166-8641(92)90019-V
  24. S. Lazaar, T. Richmond and T. Turki: Maps generating the same primal space. Quaestiones Math. 40 (2017), 1, 17-28.   DOI:10.2989/16073606.2016.1260067
  25. Z. Ma and W. M. Wu: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97.   DOI:10.1016/0020-0255(91)90007-H
  26. E. Melin: Digital surfaces and boundaries in Khalimsky spaces. J. Math. Imaging Vision 28 (2007), 169-177.   DOI:10.1007/s10851-007-0006-9
  27. R. Parikh, L. S. Moss and C. Steinsvold: Topology and epistemic logic. In: Handbook of Spatial Logics (2007), 299-341.   CrossRef
  28. B. Richmond: Principal topologies and transformation semigroups. Topology Appl. 155 (2008), 1644-1649.   DOI:10.1016/j.topol.2008.04.007
  29. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120.   DOI:10.1016/0165-0114(95)00133-6
  30. R. R. Yager: Uninorms in fuzzy system modelling. Fuzzy Sets Systems 122 (2001), 167-175.   DOI:10.1016/S0165-0114(00)00027-0
  31. R. R. Yager: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Systems 67 (1994), 129-145.   DOI:10.1016/0165-0114(94)90082-5
  32. Z. D. Wang and J. X. Fang: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 22-31.   DOI:10.1016/j.fss.2008.03.001
  33. Z. D. Wang and J. X. Fang: Residual coimplicators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 2086-2096.   DOI:10.1016/j.fss.2008.10.007