Kybernetika 58 no. 5, 790-815, 2022

The universal tropicalization and the Berkovich analytification

Jeffrey Giansiracusa and Noah GiansiracusaDOI: 10.14736/kyb-2022-5-0790

Abstract:

Given an integral scheme $X$ over a non-archimedean valued field $k$, we construct a universal closed embedding of $X$ into a $k$-scheme equipped with a model over the field with one element $\mathbb{F}_1$ (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of $X$ by previous work of the authors, and we show that the set-theoretic tropicalization of $X$ with respect to this universal embedding is the Berkovich analytification $X^{\mathrm{an}}$. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain a tropical scheme $\mathpzc{Trop}_{univ}(X)$ whose $\mathbb{T}$-points give the analytification and that canonically maps to all other scheme-theoretic tropicalizations of $X$. This makes precise the idea that the Berkovich analytification is the universal tropicalization. When $X=\mathrm{Spec}\: A$ is affine, we show that $\mathpzc{Trop}_{univ}(X)$ is the limit of the tropicalizations of $X$ with respect to all embeddings in affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally, we show that $\mathpzc{Trop}_{univ}(X)$ represents the moduli functor of semivaluations on $X$, and when $X=\mathrm{Spec}\: A$ is affine there is a universal semivaluation on $A$ taking values in the idempotent semiring of regular functions on the universal tropicalization.

Keywords:

idempotent semirings, tropical geometry, tropical schemes, Berkovich analytification, semivaluation

Classification:

14T05, 14G22

References:

  1. S. Banerjee: Tropical geometry over higher dimensional local fields. J. Reine Angew. Math. 2015 (2013), 71-87.   DOI:10.1515/crelle-2012-0124
  2. V. G. Berkovich: Spectral theory and analytic geometry over non-{A}rchimedean fields. Mathematical Surveys and Monographs, American Mathematical Society 33, Providence 1990.   CrossRef
  3. V. G. Berkovich: Smooth $p$-adic analytic spaces are locally contractible. Invent. Math. 137 (1999), 1, 1-84.   DOI:10.1007/s10107980002a
  4. V. G. Berkovich: Smooth $p$-adic analytic spaces are locally contractible. II. In: Geometric aspects of Dwork theory. (Vol. I, II.), Walter de Gruyter, Berlin 2004, pp. 293-370.   DOI:10.1515/9783110198133.1.293
  5. A. Deitmar: Schemes over $\mathbb{F}_1$. In: Number fields and function fields--two parallel worlds, Progr. Math. 239, Birkhäuser Boston, Boston, 2005, pp. 87-100.   CrossRef
  6. A. Deitmar: $\mathbb{F}_1$-schemes and toric varieties. Beiträge Algebra Geom. 49 (2008), 2, 517-525.   CrossRef
  7. N. Durov: New approach to arakelov geometry. arXiv:0704.2030, 2007.   CrossRef
  8. M. Einsiedler, M. Kapranov and D. Lind: Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601 (2006), 139-157.   CrossRef
  9. T. Foster, P. Gross and S. Payne: Limits of tropicalizations. Israel J. Math. 201 (2014), 2, 835-846.   DOI:10.1007/s11856-014-1051-x
  10. T. Foster and D. Ranganathan: Hahn analytification and connectivity of higher rank tropical varieties. Manuscr. Math. 151 (2016), 3-4, 353-374.   DOI:10.1007/s00229-016-0841-3
  11. J. Giansiracusa and N. Giansiracusa: Equations of tropical varieties. Duke Math. J. 165 (2016), 18, 3379-3433.   CrossRef
  12. W. Gubler, J. Rabinoff and A. Werner: Skeletons and tropicalizations. arXiv:1404.7044, 2014.   CrossRef
  13. E. Hrushovski and F. Loeser: Non-archimedean tame topology and stably dominated types. Ann. Math. Studies 192, Princeton University Press, Princeton 2016.   CrossRef
  14. R. Huber: Étale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics E30, Friedr. Vieweg and Sohn, Braunschweig 1996.   CrossRef
  15. J. Jun, K. Mincheva and J. Tolliver: Vector bundles on tropical schemes. arXiv:2009.03030, 2020.   CrossRef
  16. T. Kajiwara: Tropical toric geometry. In: Contemp. Math., Toric topology 460, Amer. Math. Soc., Providence 2008, pp. 197-207.   CrossRef
  17. K. Kato: Toric singularities. Amer. J. Math. 116 (1994), 5, 1073-1099.   CrossRef
  18. M. Kontsevich and Y. Soibelman: Affine structures and non-Archimedean analytic spaces. In: Progr. Math., The Unity Math. 244, Birkhäuser Boston, Boston 2006. pp. 321-385.   DOI:10.1007/0-8176-4467-9\_9
  19. M. Kontsevich and Y. Tschinkel: Non-archimedean kähler geometry.    CrossRef
  20. A. Kuronya, P. Souza and M. Ulirsch: Tropicalization of toric prevarieties. arXiv:2107.03139, 2021.   CrossRef
  21. D. Maclagan and F. Rincón: Tropical ideals. Compos. Math. 154 (2018), 3, 640-670.   DOI:10.1112/S0010437X17008004
  22. D. Maclagan and F. Rincón: Tropical schemes, tropical cycles, and valuated matroids. J. Eur. Math. Soc. (JEMS) 22 (2020), 3, 777-796.   DOI:10.4171/jems/932
  23. D. Maclagan and F. Rincón: Varieties of tropical ideals are balanced. arXiv:2009.14557, 2020.   CrossRef
  24. D. Maclagan and B. Sturmfels: Introduction to tropical geometry. American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015.   CrossRef
  25. A. W. Macpherson: Skeleta in non-Archimedean and tropical geometry. arXiv:1311.0502, 2013.   CrossRef
  26. G. Mikhalkin: Tropical Geometry. Unfinish draft book.   CrossRef
  27. G. Mikhalkin: Tropical geometry and its applications. In: International Congress of Mathematicians II, Eur. Math. Soc., Zürich 2006, pp. 827-852.   CrossRef
  28. M. Mustata and J. Nicaise: Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton. arXiv:1212.6328, 2013.   CrossRef
  29. S. Payne: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16 (2009), 3, 543-556.   DOI:10.4310/MRL.2009.v16.n3.a13
  30. S. Payne: Fibers of tropicalization. Math. Z. 262 (2009), 2, 301-311.   DOI:10.1007/s00209-008-0374-x
  31. P. Popescu-Pampu and D. Stepanov: Local tropicalization. In: Algebraic and combinatorial aspects of tropical geometry, Contemp. Math. 589, Amer. Math. Soc., Providence 2013, pp. 253-316.   DOI:10.1090/conm/589/11748
  32. J. Richter-Gebert, B. Sturmfels and T. Theobald: First steps in tropical geometry. In: Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence 2005, pp. 289-317.   CrossRef
  33. M. Temkin: Relative Riemann-Zariski spaces. Israel J. Math. 185 (2011), 1-42.   DOI:10.1007/s11856-011-0099-0
  34. A. Thuillier: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. applications à la théorie d'arakelov, 2005.    CrossRef
  35. B. Toën and M. Vaquié: Au-dessous de ${\rm Spec} \mathbb{Z}$. J. K-Theory 3 (2009), 3, 437-500.   DOI:10.1017/is008004027jkt048
  36. M. Ulirsch: Functorial tropicalization of logarithmic schemes: the case of constant coefficients. Proc. Lond. Math. Soc. 3 114 (2017), 6, 1081-1113.   DOI:10.1112/plms.12031
  37. M. Ulirsch: Non-Archimedean geometry of Artin fans. Adv. Math. 345 (2019), 346-381.   DOI:10.1016/j.aim.2019.01.008
  38. J. Włodarczyk: Embeddings in toric varieties and prevarieties. J. Algebraic Geom. 2 (1993), 4, 705-726.   CrossRef