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THE UNIVERSAL TROPICALIZATION
AND THE BERKOVICH ANALYTIFICATION

Jeffrey Giansiracusa and Noah Giansiracusa

Given an integral scheme X over a non-archimedean valued field k, we construct a universal
closed embedding of X into a k-scheme equipped with a model over the field with one element
F1 (a generalization of a toric variety). An embedding into such an ambient space determines
a tropicalization of X by previous work of the authors, and we show that the set-theoretic
tropicalization of X with respect to this universal embedding is the Berkovich analytification
Xan. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain
a tropical scheme Trop

univ
(X) whose T-points give the analytification and that canonically

maps to all other scheme-theoretic tropicalizations of X. This makes precise the idea that the
Berkovich analytification is the universal tropicalization. When X = Spec A is affine, we show
that Trop

univ
(X) is the limit of the tropicalizations of X with respect to all embeddings in

affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally,
we show that Trop

univ
(X) represents the moduli functor of semivaluations on X, and when

X = Spec A is affine there is a universal semivaluation on A taking values in the idempotent
semiring of regular functions on the universal tropicalization.
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1. INTRODUCTION

In recent years, two methods of translating problems from algebraic geometry into
other landscapes, both based on non-archimedean valuations, have become increasingly
important. The first is tropicalization [8, 24, 27], which reduces the complexity of
varieties by turning them into finite polyhedral complexes. The second is Berkovich’s
non-archimedean analytification [2], where even the affine line becomes an intricate
fractal-like infinitely branching tree.

Analytification is intrinsic, whereas tropicalization depends on the choice of an
embedding into a toric variety. Payne showed that these two processes are intimately
related: the Berkovich analytification of an affine variety over a complete valued field is
the category-theoretic limit of its tropicalizations with respect to embeddings in affine
spaces (see [29, Theorem 1.1], as well as [29, Theorem 4.2], [9], and [20, Theorem 6.4]
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for global variants). Therefore the analytification is often thought of as an intrinsic
and universal tropicalization. This view is also hinted at in the unfinished paper [19],
and further justified by the existence of skeletons — polyhedral complexes resembling
tropical varieties onto which the analytification admits a strong deformation retraction
[2, 3, 4, 12, 13, 18, 28].

A second way to think of the analytification is as a space of semivaluations. Given a
non-archimedean valued field k and a k-algebra A, the Berkovich analytification of SpecA
can be defined as the space of all rank-one semivaluations on A compatible with the
valuation on k, and this description extends to non-affine schemes with an appropriate
notion of (semi)valuation in the non-affine case.

Thus we have two heuristic devices with which to view the analytification: as the
universal tropicalization, and as the moduli space of semivaluations. Using the ideas
developed in [11] — (1) a generalization of the ambient spaces in which to tropicalize
from toric varieties to schemes equipped with models over the field with one element, (2)
a refinement of tropicalization from sets to semiring schemes, and (3) a generalization of
semivaluations to take values in arbitrary idempotent semirings — we are now able to
make both of these ideas into precise statements.

1.1. The universal tropicalization

The embeddings originally used for tropicalization were taken to be in an algebraic
torus, as in [8, 32], but Payne and Kajiwara showed that there is a natural extension
to arbitrary toric varieties simply by computing the tropicalization separately for each
torus-invariant stratum and assembling the results [16, 29]. The underlying reason that
toric varieties yield tropicalizations of their subschemes is that they have a distinguished
class of monomials in the coordinate ring of each torus-invariant affine patch, and all the
gluing of affine patches occurs by localization of monomials.

One is thus led immediately to consider a more general class of ambient spaces in
which to tropicalize subschemes: k-schemes Z equipped with a model over F1, the
field with one element. This means an F1-scheme Z ′ (essentially in the sense of [35]
or [17, 5, 6]) and an isomorphism Z ∼= Z ′ ×Spec F1

Spec k, or in more concrete terms,
it means that there is an open affine covering of Z for which the coordinate rings are
presented as monoid rings, and the localizations with which these affine patches are glued
are induced by localizations of the monoids. See [11, §3] and the references therein for
details. This generalization of toric varieties allows, for instance, non-finite type schemes,
and more limits exist in this category. In particular, while there is no initial object in the
category of embeddings of a scheme X into toric varieties, the category of embeddings
into schemes equipped with an F1-model does have an initial object, which we denote
X ↪→ X̂. This universal embedding is completely explicit; on each affine patch it is the
unit transformation of the base-change adjunction between affine F1-schemes and affine
k-schemes. More concretely, if X = Spec A is affine, X̂ is the spectrum of the monoid
ring k[A], and X ↪→ X̂ corresponds to the evaluation map k[A] � A; so the “monomials”
are the elements of A. This construction extends to the case when X is not affine.

In [11] we showed how one can tropicalize a closed subscheme of any integral k-scheme
equipped with a model over F1. In this paper we show that one can obtain the Berkovich
analytification not merely as a limit of tropicalizations, but as a tropicalization itself.
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Theorem A. Let X be an integral scheme over a non-archimedean valued field k. The
set-theoretic tropicalization of X with respect to the universal embedding X ↪→ X̂
is canonically identified with the underlying set of the Berkovich analytification Xan.
Moreover, this identification becomes a homeomorphism when the tropicalization of X
is endowed with the “strong Zariski topology” in which the closed subsets are given by
closed subschemes.

Remark 1.1.1. It follows immediately from the universal property of the embedding
X ↪→ X̂, and functoriality of tropicalization, that the corresponding tropicalization is the
limit of all tropicalizations (not just those coming from embeddings in toric varieties).
The statement that one often obtains the same limit when restricting to a class of
embeddings in toric varieties [9, 29] requires an additional argument.

Remark 1.1.2. Given a system of toric embeddings such that the corresponding limit
of tropicalizations is the analytification (cf., [9]), one can obtain the analytification as the
tropicalization with respect to the (typically infinite) product of these toric embeddings.
However, not all varieties can be embedded in a toric variety [38], so for such varieties
one must leave the realm of toric tropicalization and embrace more general F1-schemes
in order to recover analytification as a tropicalization.

The main construction introduced in [11] is a scheme-theoretic refinement of trop-
icalization that reduces to the set-theoretic tropicalization upon passing to the set of
T-points, where T is the tropical semiring (R ∪ {∞},min,+). In brief, given a closed
embedding locally described as a quotient of a monoid ring k[M ], the tropicalization is a
quotient of the semiring T[M ], and the equations of the tropicalization are produced by
valuating the coefficients of the original equations and then applying the bend relations
(see §3.1 for a review).

When we apply scheme-theoretic tropicalization to the universal embedding X ↪→ X̂
we obtain a semiring scheme underlying the analytification.

Theorem B. Let X be an integral scheme over a non-archimedean valued ring k.
The scheme-theoretic tropicalization associated with the embedding X ↪→ X̂ admits a
canonical morphism of T-schemes to the tropicalization associated with any other closed
embedding of X into a locally integral scheme with F1-model. Upon passing to T-points,
these morphisms reduce to the canonical projections from the Berkovich analytification
to all set-theoretic tropicalizations.

Accordingly, we call this scheme the universal tropicalization of X and denote it by
Trop

univ
(X).

Since Trop
univ

(X) is the initial object in the category of tropicalizations (with mor-
phisms induced by morphisms of embeddings), it is trivially the limit (in the category
of T-schemes) of the diagram of all scheme-theoretic tropicalizations. We also restrict
to the subcategory of tropicalizations from embeddings in affine space and prove a
scheme-theoretic refinement of Payne’s affine limit result:

Theorem C. If X is an affine integral scheme of finite type over k, then the limit of its
tropicalizations with respect to all closed embeddings in finite-dimensional affine spaces
is naturally isomorphic as a T-scheme to the universal tropicalization Trop

univ
(X).
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Remark 1.1.3. For simplicity, we have restricted attention to the affine case of this
theorem. A modification of the argument along the lines of [29, Theorem 4.2] should
allow one to easily prove the corresponding statement for embeddings of a quasiprojective
variety X into toric varieties.

1.2. The moduli space of semivaluations

The category of T-schemes and the universal tropicalization Trop
univ

(X) allow us to make
precise the idea that the Berkovich analytification is a moduli space of semivaluations.
Let A be a k-algebra, where k is a field equipped with a non-archimedean valuation
ν : k → T. Recall that the points of the analytification of Spec A are the rank-one
semivaluations on A compatible with ν.

In [11, Definition 2.5.1] and [25, §4.2] a generalization of the notion of semivaluation
on a ring was introduced by replacing T with an arbitrary idempotent semiring S — a
semivaluation in this sense is now a multiplicative map A→ S that satisfies a certain
superadditivity condition with respect to the canonical partial order on S. If k is equipped
with a semivaluation ν : k → S, and T is an S-algebra, then a semivaluation A→ T is
said to be compatible with ν if the square

k S

A T

//

�� ��
//

commutes.

Theorem D. Let k be a field, S an idempotent semiring, and ν : k → S a semivaluation.
Given an integral k-algebra A, the S-scheme Trop

univ
(SpecA) represents the functor on

affine S-schemes sending Spec T to the set of semivaluations A → T compatible with
ν. In particular, there is a universal semivaluation on A compatible with ν and it takes
values in the semiring of regular functions on the universal tropicalization.

Remark 1.2.1. This moduli functor of semivaluations was first shown to be repre-
sentable in semiring schemes by MacPherson in [25, Theorem 6.24]. Thus, the main
novelty of this theorem is to identify the representing scheme with the universal tropical-
ization.

Note that the generalized semivaluations we consider here include higher rank Krull
(semi)valuations (where S is a totally ordered idempotent semifield). Thus the universal
tropicalization contains information about Huber’s adic space analytification [14] in
addition to the rank-one information of the Berkovich analytification. Note also that in
order for the universal semivaluation to exist, the total ordering on the value group for
semivaluations must indeed be weakened to a partial ordering, as in [11, Definition 2.5.1].

Conventions

Throughout this paper all algebraic objects will be assumed to be commutative. Monoids,
rings, and semirings are always assumed to have a multiplicative unit, and semirings are
always assumed to have an additive unit as well.
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2. THE UNIVERSAL EMBEDDING

Let X be a scheme over a ring R. In this section we will construct an embedding X ↪→ X̂
that is universal among embeddings of X that determine tropicalizations of X, i. e.,
embeddings over SpecR into schemes equipped with a locally integral model over the
field with one element F1.

2.1. The evaluation map

We shall use the naive version of the field with one element F1 as put forward by [17, 5, 35].
Rather than define F1 as an object directly, one instead specifies what its categories of
modules and algebras should be.

Definition 2.1.1. An F1-module is a set equipped with a distinguished basepoint. An
F1-algebra is a monoid-with-zero, i. e., a commutative monoid B (written multiplicatively)
with a multiplicative unit 1 and an element 0 such that b · 0 = 0 for all b ∈ B. An
F1-algebra is said to be integral if the set of nonzero elements forms a monoid (i. e.,
there are no zero-divisors) that is cancellative (i. e., the canonical map from this monoid
to its group completion is injective). A homomorphism of F1-algebras is a monoid
homomorphism sending 0 to 0.

Remark 2.1.2. Note that an F1-algebra with no zero-divisors need not be integral. For
example, the F1-algebra B = {0, 1, x, y, y2, y3, · · · } with the relation xy = y2 has no
zero-divisors, but the monoid of non-zero elements fails to be cancellative.

Let R be a (semi)ring. There is a forgetful functor

R-mod→ F1-mod

that sends an R-module to its underlying set with 0 as the distinguished point; we
will refer to this as a scalar restriction functor. It admits a left adjoint that sends an
F1-module to the free R-module generated by the non-basepoint elements; we call this
the scalar extension functor and denote it by −⊗F1

R. This adjunction at the level of
modules induces an adjoint pair of functors

−⊗F1R : F1-alg � R-alg : M(−). (1)

The scalar restriction functor sends an R-algebra A to its underlying multiplicative
monoid M(A); we will write xa for the element corresponding of a ∈ A. The scalar
extension functor sends an F1-algebra B to the R-algebra with one generator xb for each
element b ∈ B and the relations

xaxb = xab for a, b ∈ B,
x1 = 1,

x0 = 0.

Given an R-algebra A and an F1-algebra B, the adjoint of an R-algebra homomorphism
f : B ⊗F1 R→ A is the map B →M(A) sending b to xf(b).
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Lemma 2.1.3. A ring A is an integral domain if, and only if, the F1-algebra M(A) is
integral.

P r o o f . If A is an integral domain, then it has no zero-divisors, so the set of non-
zero elements A r {0} is a cancellative monoid (a non-cancellative relation xy = xz
would imply the existence of a zero divisor: x(y − z) = 0). Conversely, if Ar {0} is a
cancellative monoid then Ar {0} = M(A)r 0 injects into its group completion, which is
M(Frac(A)) r {0}, so A injects into its field of fractions. �

Given an R-algebra A, we will write Â for the R-algebra M(A)⊗F1
R (i. e., first apply

scalar restriction and then scalar extension). Elements of Â are finite formal R-linear

combinations of elements xa for a ∈ Ar{0}. Note that Â is functorial in A; an R-algebra

homomorphism f : A → B induces an R-algebra homomorphism f̂ : Â → B̂ sending
xa 7→ xf(a). The adjunction (1) comes with a counit natural transformation Â → A
which admits an explicit description. The counit is a surjective R-algebra homomorphism
ev defined by

ev : xa 7→ a.

We call this map the evaluation because it evaluates a formal R-linear combination of
elements of A to an element of A using the arithmetic operations of A:

ev

(∑
i

λixai

)
=
∑
i

λiai,

for λi ∈ R and ai ∈ A.
The kernel of ev is

ker(ev) =

{∑
i

λixai

∣∣∣∣∣ ∑
i

λiai = 0

}
,

and it admits a much smaller presentation that will be useful later on.

Proposition 2.1.4. Given an R-algebra A, the kernel of ev : Â→ A is generated as a
Z-module by the following elements:

1. λxa − xλa, for a ∈ A and λ ∈ R;

2. xa + xb + xc, for a, b, c ∈ A with a+ b+ c = 0.

P r o o f . Given an expression E =
∑n
i=1 λixai in the kernel of ev, we will reduce it to

zero by adding an appropriate sequence of elements of the two types above. Adding
xλiai − λixai to E, for each i, reduces it to the expression

E′ =

n∑
i=1

xλiai .

This is in the kernel of ev if and only if
∑
i λiai = 0. Subtracting first xλ1a1

+ xλ2a2
+

x−λ1a1−λ2a2
and then −x−λ1a1−λ2a2

− xλ1a1+λ2a2
from E′ yields an expression of the

same form but with one fewer terms. Repeating this inductively eventually yields x∑
i λiai

;
the subscript is zero by the hypothesis that the original expression E was in the kernel
of ev, and xa = 0 in Â if and only if a = 0. �
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2.2. The universal embedding in the affine case

We now describe how the evaluation map ev : Â → A gives a universal embedding of
SpecA into an ambient space with the structure required to tropicalize SpecA.

Definition 2.2.1. An F1-framing on an R-scheme X is an F1-scheme Y and a morphism
of R-schemes X → Y ×F1

SpecR. We say that a framing is affine if X and Y are both
affine. A morphism of F1-framed schemes is a diagram

X Y ×F1
SpecR

X ′ Y ′ ×F1
SpecR

//

�� ��

//

(2)

where the right vertical arrow is induced by a morphism of F1-schemes Y → Y ′. An
F1-embedding is an F1-framing that is also a closed immersion.

In other words, the category of F1-framed schemes is simply the comma category of
R-schemes over F1-schemes.

For any affine R-scheme X = SpecA, the evaluation map defines an F1-embedding
X ↪→ X̂ where the F1-algebra of the ambient space is M(A). We call this the universal
embedding of X for the following reason. As a purely formal consequence of the adjunction
(1), this embedding is the initial object in the category of framings on X, and hence it is
initial among F1-embeddings. More precisely,

Proposition 2.2.2. Given an affine framed R-scheme α : X → SpecB ⊗F1
R, there is

a unique factorization through the universal embedding

X → X̂
ηα→ SpecB ⊗F1 R.

Moreover, this factorization is functorial in the sense that a morphism of affine framed
schemes as (2) induces a diagram

X X̂ Y ×F1
SpecR

X ′ X̂ ′ Y ′ ×F1 SpecR.
��

// //

�� ��

// //

P r o o f . Suppose X = SpecA, so the framing α corresponds to an R-algebra homomor-
phism

B ⊗F1 R→ A,

which is adjoint to an F1-algebra homomorphism

B →M(A). (3)
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The evaluation map Â → A is adjoint to the identity on M(A). The desired map

ηα : X̂ → SpecB ⊗F1
R corresponds to a homomorphism

B ⊗F1
R→M(A)⊗F1

R

that is the functor − ⊗F1
R applied to a morphism B → M(A), but the only such

morphism that gives the desired factorization is (3). This shows existence and uniqueness
of the factorization ηα. The functoriality claim follows from a similar purely formal
manipulation of the adjunction. �

2.3. The difficulty in globalizing the universal embedding

We would like to construct an extension of the universal embedding functor from affine
R-schemes to arbitrary schemes over Spec R, and we will do so in the next section.
However, this is not entirely straightforward. The root of the difficulty is that X 7→ X̂
does not in general send open covers to open covers, as we now explain.

Remark 2.3.1. In the earlier version of this paper, it was incorrectly claimed that the
adjunction between scalar restriction and scalar extension for affine schemes directly
extends to an adjunction for arbitrary schemes. Although open immersions are sent to
open immersions, since the adjunction does not preserve covers, existence of the extension
is not immediate. We thank Oliver Lorscheid for pointing this out.

Recall that the category of affine F1-schemes is the opposite of the category of F1-
algebras, basic open immersions correspond to localizations, and general F1-schemes can
be described by gluing affine patches together along open immersions. See [11, §3] or
[35] for further details. The category of schemes over a semiring can also be constructed
in essentially the same way.

The scalar restriction and extension functors R-alg � F1-alg commute with localiza-
tions (see, for example, [7, Paragraph 6.1.13]), so they send open immersions to open
immersions. However, the scalar restriction functor M does not send open covers to open
covers. The difficulty here is that an affine F1-scheme has very few Zariski open covers.

Proposition 2.3.2. Given an affine F1-scheme Y , a collection of affine open subschemes
{Ui} is a Zariski cover if and only if Ui = Y for some i.

P r o o f . Suppose Y = Spec B for an F1-algebra B. A collection of principal open
subschemes Ui = SpecB[a−1

i ] covers SpecB if and only if the ai generate the unit ideal
in B. The ideal generated by the ai is simply the set of all elements that are a multiple
of one of the ai; i. e., it is the multiplicative monoid generated by the ai. This is the unit
ideal if and only if at least one of the ai is a unit. �

Example 2.3.3. Let A = R[z] and consider the principal open subschemes of X =
Spec A given by U = Spec R[z, z−1] and V = Spec R[z, (1 − z)−1]. The pair {U, V }
is an open cover since z and 1 − z generate the unit ideal in the ring A. The scalar
restriction functor M sends U and V to principal open subschemes of the affine F1-scheme
SpecM(A). The ideal (xz, x1−z) ⊂ M(A) consists of all elements that can be written
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in either the form xaxz or xax1−z for some a ∈ A. Clearly this is not the unit ideal of

M(A) since 1 6= az or a(1− z) for any a ∈ A. On X̂ = SpecM(A)⊗F1
R, we have open

subschemes Û and V̂ defined by the ideals (xz) and (x1−z) respectively, but these ideals
do not generate the unit ideal in the R-algebra M(A)⊗F1

R so these open subschemes

don’t cover X̂.

Thus if X is an affine R-scheme with an affine open cover {Ui}, the schemes Ûi
will be affine open subschemes of X̂, but they will not in general form an open cover.
The problem, then, is that if X is not necessarily affine we cannot build X̂ simply by
choosing an affine open cover and gluing the universal embeddings of the affine patches
in this cover. Different choices of cover will result in different glued objects. In the
next subsection, we will see that the way around this obstacle is to use all open affine
subschemes of X.

2.4. The universal embedding in the non-affine case

We now extend the universal embedding to arbitrary not necessarily affine schemes. The
idea is that a scheme X can be written as the colimit of all its affine open subschemes U ,
and so we define X̂ to be the colimit of the corresponding diagram of affine schemes Û
and open immersions. This colimit exists (one can construct it as a locally ringed space
and then easily check that it is a scheme).

Proposition 2.4.1. The universal embeddings U → Û for affine open subschemes of
X glue together to give a embedding X → X̂, and on affine schemes this restricts to
the previously constructed affine universal embedding. This embedding is initial among
F1-framings of X.

P r o o f . For each affine open U , there is a canonical framing morphism αU : U → Û → X̂,
and when U ⊂ V , the functoriality of Prop. 2.2.2 implies that αV |U = αU , so these

morphisms glue together to give a closed immersion X → X̂.
To show that X → X̂ is initial, suppose Y is an F1-scheme and α : X → Y ×F1

SpecR
is a morphism. The target is covered by affine patches of the form SpecB ⊗F1

R, and for
any affine open U ⊂ X mapping into SpecB ⊗F1 R, there is a unique factorization

U → Û → SpecB ⊗F1 R.

Once again, by the functoriality of these affine factorization, these glue together to produce
the desired factorization X → X̂ → Y ×F1 Spec R. Uniqueness of this factorization
follows from the fact that it is locally unique. �

The gluing construction above can also be described in category theoretic terms as a
left Kan extension from affine schemes to schemes. First, let us recall the concept of left
Kan extension. Consider a pair of functors

A B

C

//F

��
G

??
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and the question of filling in the diagonal arrow. There may or may not exist a functor
H : C→ B making the diagram commute in the sense that there is a natural isomorphism
F ∼= H ◦G. A weaker condition would be to ask for an H and a natural transformation
(that is not necessarily invertible) ωH : F ⇒ H ◦G, but now there is a category of such
pairs (H,ωH). A morphism (H1, ω1)→ (H2, ω2) is a natural transformation H1 ⇒ H2

that sends ω1 to ω2. The left Kan extension of F along G is an initial object in this
category; i. e., it is a functor LanGF : C → B together with a natural transformation
ω : F ⇒ LanGF ◦ G such that for any other pair (H,ωH) there is a unique natural
transformation LanGF ⇒ H sending ω to ωH . While it may not always exist, when B

admits enough colimits, the left Kan extension can be constructed via a straightforward
recipe:

LanGF (c) = colim
a∈G/c

F (a)

where G/c is the comma category of objects a ∈ A over c, i. e., pairs (a ∈ A, f : G(a)→ c).
Returning to the case at hand, let O denote the category of R-schemes and open

immersions, and let OAff ⊂ O denote the full subcategory of affine schemes. The affine

universal embedding X 7→ X̂ constructed so far in section 2.2 is a functor defined on
affine schemes and all morphisms, but let us now restrict to open immersions and regard
it as a functor

E : OAff → Sch/R.

Consider the left Kan extension of E along the inclusion j:

OAff Sch/R

O

//E

��
j

::

LanjE

Somewhat more concretely, for an R-scheme X, the object X̂ := LanjE(X) can be

described as the colimit of Û as U runs over the poset OAff (X) of all affine open
subschemes of X (this is the category of objects of Oaff over X ∈ O).

3. TROPICALIZING THE UNIVERSAL EMBEDDING

We now study the tropicalization of an integral scheme X with respect to the universal
embedding X ↪→ X̂.

3.1. A brief review of scheme-theoretic tropicalization

In [11] we introduced a generalization and refinement of the Kajiwara-Payne set-theoretic
tropicalization of subvarieties of toric varieties over a rank-one valued field. Here we
review that construction.

Let T denote the idempotent semiring (R ∪ {∞},min,+) with additive unit 0T =∞
and multiplicative unit 1T = 0. Let k be a field equipped with a valuation ν : k → T
(by which we mean a multiplicative and superadditive map preserving the multiplicative
and additive unit, respectively). Let B be an integral F1-algebra, and I ⊂ B ⊗F1 k an
ideal. We can regard I as a k-linear subspace and tropicalize it with respect to ν to
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get a tropical linear space trop(I) ⊂ B ⊗F1 T (or tropν(I) if we need to emphasize the
valuation) which is, by definition, the T-linear span of the coefficient-wise valuations of
the elements of I. The set trop(I) is automatically a T-submodule, and moreover it turns
out to be an ideal in B ⊗F1

T (this requires the assumption that B is integral, see [11,
Proposition 6.1.1 and Remark 6.1.2]); i. e., it is a tropial ideal as studied by Maclagan
and Rinćon in [21, 22, 23]. The congruence Btrop(I) on B⊗F1 T is generated by the bend
relations

B(f) : f ∼ fb̂
for f ∈ trop(I) and b a monomial term in f , where fb̂ denotes the result of deleting b
from f .

Now let X be a k-scheme, Y a locally integral F1-scheme (which means Y admits
an open affine cover by the spectra of integral F1-algebras), and ϕ : X ↪→ Y ×F1

k a
closed embedding corresponding to a quasi-coherent ideal sheaf I on Y ×F1 k. For each
integral affine patch U ⊂ Y , I is in particular a k-linear subspace of the space of regular
functions on U ×F1 k, and so its tropicalization trop(I (U)) is a tropical linear space in
the space of regular functions on U ×F1

T. These tropical linear spaces assemble to form
a quasi-coherent ideal sheaf trop(I ) on Y ×F1

T. Applying the bend relations B(−) on
each of the above affine patches then yields a quasi-coherent congruence sheaf Btrop(I )
on Y ×F1 T; the tropicalization Trop

ϕ
(X) (or Tropν

ϕ
(X) to emphasize the valuation) of X

with respect to the embedding ϕ is then, by definition, the closed subscheme determined
by this congruence sheaf, regarded as a scheme over Spec T.

A quintessential example of an F1-scheme is a toric variety Y∆, where the fan ∆
provides the model over F1. Set-theoretic tropicalization, as defined by Payne and
Kajiwara [16, 29], applies to subvarieties of toric varieties ϕ : X ↪→ Y∆, and [11, Theorem
6.3.1] shows that the output of that coincides with the T-points of the scheme-theoretic
tropicalization Trop

ϕ
(X).

Remark 3.1.1. The idea of generalizing the ambient spaces for tropicalization from
toric varieties to F1-schemes first appeared in [31], although they worked only with
set-theoretic tropicalization.

Functoriality of tropicalization [11, Proposition 6.4.1] is a scheme-theoretic enrichment
of Payne’s observation [30, Corollary 2.6] regarding torus equivariant morphisms of toric
varieties. Namely, if ψ : Y1 → Y2 is a map of integral F1-schemes and ϕi : X ↪→ Yi ×F1

k
are closed embeddings forming a commutative triangle

X

Y1 ×F1 k Y2 ×F1 k,
zz

ϕ1

$$

ϕ2

//
ψ×F1k

then there is an induced morphism of tropicalizations Trop
ϕ1

(X)→ Trop
ϕ2

(X).

In addition to passing from toric varieties to arbitrary integral F1-schemes as ambient
spaces for tropicalization, in [11] we observed that the domain of scheme-theoretic
tropicalization, with its functoriality property, naturally admits the following enlargement:

1. The field k can be replaced by an arbitrary ring R.
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2. The tropical numbers T can be replaced by an arbitrary idempotent semiring S.

Item (2) requires a generalization of the definition of (semi)valuation that we discuss in the
next section. This generalization includes the case of higher-rank Krull (semi)valuations
k → Γ ∪ {∞} simply by giving the totally ordered abelian group Γ the structure of a
semiring with ∞ as the additive identity, where multiplication is the group operation
in Γ and addition is the minimum with respect to the ordering. Set-theoretic tropical-
izations with respect to higher rank Krull valuations were studied in [1]. Higher rank
tropicalization has been further studied in [10], where an associated notion of higher
rank ‘Hahn’ analytification is introduced.

The output of Trop is then canonically a scheme over Spec S. Explicitly, when
Y = SpecB ⊗F1

R and X is defined by an ideal I, we have

Trop(X) = SpecB ⊗F1
S/Btrop(I)

where trop(I) ⊂ B ⊗F1
S is the ideal generated by applying a (generalized) semivaluation

R→ S coefficient-wise to the elements of I.

3.2. Semivaluations

Here we review the definition and properties of the generalized class of semivaluations
that were first introduced in [11].

Definition 3.2.1. Given a ring R and an idempotent semiring S, a semivaluation
ν : R→ S is a map such that

1. ν(0) = 0S ;

2. ν(1) = ν(−1) = 1S ;

3. (multiplicative): ν(ab) = ν(a)ν(b);

4. (superadditive): ν(a+ b) + ν(a) + ν(b) = ν(a) + ν(b).

Note that conditions (2) and (3) allow us to rewrite the superadditivity condition (4) in
a more symmetric form as

ν(a) + ν(b) + ν(c) = ν(a) + ν(b) = ν(a) + ν(c) = ν(b) + ν(c)

for any a, b, c ∈ R satisfying a + b + c = 0. More generally, it follows that if a1 +
a2 + · · · + an = 0 in R, then the value of the summation ν(a1) + · · · + ν(an) in S is
unchanged if any one term is omitted; we say that this summation tropically vanishes.
Also observe that if R→ S is a semivaluation in this sense, then pre-composition with
a ring homomorphism R′ → R and post-composition with a semiring homomorphism
S → S′ both yield semivaluations.

Note also that when S = T, the above definite reduces to the usual definition of a
real (rank 1) semivaluation.

Let Val (R,S) denote the set of semivaluations from R to S. Fixing S, we can
regard Val (−, S) as a covariant functor Oaff → Sets. We can then take the left Kan
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extension along the inclusion Oaff ↪→ O to extend to arbitrary schemes. Concretely, a
point of Val (X,S) is represented by an affine open subscheme U = SpecA of X and a
semivaluation ν : A→ S, and two pairs (U1, ν1) and (U2, ν2) are equivalent if there exists
(U3, ν3) with U3 ⊂ U1 ∩ U2 such that ν3 maps to ν1 and ν2. We refer to such an object
as a semivaluation on X with values in S. This mildly extends the definition of [33, §3.1]
to allow semivaluations taking values in more general semirings instead of just T.

If ν : R → S is a semivaluation, A is an R-algebra, and T is an S-algebra, then we
say that a semivaluation w : A→ T is compatible with ν if the diagram

R S

A T
��

//

��
//

commutes. We write Val ν(A, T ) for the set of semivaluations on A taking values in T
and compatible with ν; it is a contravariant functor of R-algebras in the first variable,
and a covariant functor of S-algebras in the second variable. As in the paragraph above,
left Kan extension along the inclusion Oaff ↪→ O extends this to a functor on arbitrary
schemes.

When the semivaluation on R takes values in T and X is an R-scheme, the subset
Val ν(X,T) of semivaluations compatible with ν is precisely the underlying set of the
Berkovich analytification Xan.

3.3. The points of a tropicalization

Let Y be an F1-scheme, and let R be a ring with a semivaluation ν : R→ S. Given an
R-algebra A, an S-algebra T , and a semivaluation w : A→ T compatible with ν, there
is a tropicalization-of-points map

trop : (Y ×F1
SpecR)(A)→ (Y ×F1

Spec S)(T ).

This map is defined as follows. Locally Y ×F1
SpecR is of the form SpecB ⊗F1

R for an
F1-algebra B, and an A-valued point is adjoint to a homomorphism B →M(A). Since
w is multiplicative, the composition

B →M(A)
w→M(T )

is an F1-algebra homomorphism, and this is adjoint to a S-algebra homomorphism
B ⊗F1 S → T .

Let X be a locally integral scheme over R with semivaluation ν : R → S, and
ϕ : X ↪→ Y ×F1

Spec R an F1-embedding. These data determine a tropicalization
Trop

ϕ
(X), which is a scheme over the idempotent semiring S. Locally, X is cut out by

an ideal I ⊂ B ⊗F1 R, and

Trop
ϕ

(X) = SpecB ⊗F1 S/Btrop(I)

where trop(I) ⊂ B ⊗F1
S is the ideal generated by applying ν coefficient-wise to the

elements of I. Note that X(A) ⊂ (Y ×F1 R)(A) and Trop
ϕ

(X)(T ) ⊂ (Y ×F1 S)(T ).
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Proposition 3.3.1. The tropicalization-of-points map sends X(A) into Trop
ϕ

(X)(T ).

P r o o f . It suffices to verify this on an affine patch Spec B ⊗F1
R ⊂ Y ×F1

R. If X is
defined by an ideal I, then an A-valued point p corresponds to an R-algebra morphism
p : B⊗F1 R→ A such that f(p) = 0 for all f ∈ I. Thus w(f(p)) = 0T , and then it follows
from the symmetric form of the superadditivity condition that if fi are the monomial
terms of f , then the sum

∑
i w(fi(p)) is unchanged if any single term is omitted. It

follows that p tropicalizes to a homomorphism trop(p) : B ⊗F1
S → T that descends to

the quotient by the congruence Btrop(I), and hence w ◦ p determines a T -valued point of
Tropϕ(X).

�

Remark 3.3.2. A T -valued point of Trop
ϕ

(X) can be thought of as a semivaluation on

X that is, in an affine patch on which it lives, defined only on the monomials coming from
the embedding ϕ and satisfying superadditivity only for linear combinations of monomials
in the defining ideal of X. Moreover, every such partially defined semivaluation comes
from a T -point. This bijection appears as Theorem D in [15], and it follows directly
from the definitions here. This fact provides an illuminating interpretation of our results
on the relation between the universal tropicalization or Berkovich analytification and
finite tropicalizations: a semivaluation on a scheme X restricts to a partially defined
semivaluation on the monomials from any F1-embedding of X, and if the set of monomials
is all elements of the coordinate algebra of an affine patch in X then a partially defined
semivaluation is the same as a true semivaluation.

Remark 3.3.3. The tropicalization-of-points map is a mild generaization of the Kajiwara-
Payne tropicalization map for toric varieties [16, 29]. There are numerous interesting
further refinements and generalization of tropicalization, such as the local tropicalization
of Popescu-Pampu and Stepanov [31] and the logarithmic tropicalization studied by
Ulirsch [36] and its extension to stacks [37]. It would be interesting to combine our
construction with these.

3.4. Strong tropical bases

Let B be an integral F1-algebra, ν : R→ S a semivaluation from a ring to an idempotent
semiring, and I ⊂ B ⊗F1

R an ideal. In general, the tropicalized ideal trop(I) ⊂ B ⊗F1
S

is not finitely generated, and so the congruence Btrop(I) is presented by an infinite set
of generating relations. There is often a large amount of redundancy in this generating
set, and so one can ask about the existence of smaller sets of generating relations. Given
a subset K ⊂ I, we can consider the set of tropical polynomials {ν(f)}f∈K and then the
congruence generated by their bend relations, 〈B(ν(f))〉f∈K .

Definition 3.4.1. A strong tropical basis for an ideal I is a generating subset K ⊂ I
such that

Btrop(I) = 〈B(ν(f))〉f∈K .

Remark 3.4.2. In [11, Definition 8.2.1] we proposed a different notion of tropical basis:
a scheme-theoretic tropical basis is a collection {Ji} of principal ideals that generates I
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as an ideal and such that the collection of congruences {Btrop(Ji)} generates Btrop(I). If
{fi} ⊂ I is a strong tropical basis then the collection of principal ideals {(fi)} is always
a scheme-theoretic tropical basis. However, the converse is not necessarily true: as shown
in [11, Example 8.1.1], for the polynomial f = x2 + xy + y2 ∈ R[x, y], the congruence
B(ν(f)) is strictly smaller than the congruence Btrop(I) for I = (f), and so in this case
{(f)} is trivially a scheme-theoretic tropical basis, while {f} is not a strong tropical
basis.

The following result is the technical heart of this paper.

Proposition 3.4.3. The elements given in Proposition 2.1.4 are a strong tropical basis
for the kernel of ev : Â→ A, for any semivaluation ν : R→ S.

P r o o f . By [11, Lemma 5.1.3(2)] (see also the first paragraph in the proof of [22, Theorem
1.1]), the congruence Btrop(ker(ev)) is spanned as an S-module by the congruences
B(ν(f)) for f ∈ ker(ev). Thus it suffices to show that each such congruence B(ν(f)) is
contained in the congruence generated by the bend relations of the semivaluations of the
elements of types (1) and (2).

Consider an element f ∈ ker(ev); the coefficient-wise semivaluation of f is of the form

ν(f) =
∑
i

ν(λi)xai , with
∑
i

λiai = 0.

The bend relations of the semivaluations of generators of type (1) give the relations

xλa ∼ ν(λ)xa, (4)

and in particular, x−a ∼ xa since ν(−1) = ν(1) = 1. Using these relations we see that
ν(f) is equivalent to an element g ∈M(A)⊗F1 S of the form

g =

n∑
i=1

xbi , with
∑

bi = 0

(here bi := λiai to keep the notation simpler). We now show that the congruence B(g) is
contained in the congruence

J := 〈B(xa + xb + x−a−b)〉a,b∈A.

The relation xb1 + xbn ∼ xb2+···+bn−1 + xbn from B(xb1 + xb2+···+bn−1 + xbn) gives the
relation

g = xb1 + xbn +

n−1∑
i=2

xbi (5)

∼ xb2+···+bn−1 + xbn +

n−1∑
i=2

xbi

= gb̂1 + xb2+···+bn−1
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in J . Next, consider the relation

xb2+···+b` + xb`+1
∼ xb2+···+b`+1

+ xb`+1

from B(xb2+···+b` + xb`+1
+ x−b2−···−b`+1

) and xc ∼ x−c; using this repeatedly as ` runs
from 2 up to n− 2 gives

gb̂1 = xb2 + xb3 + · · ·+ xbn

∼ xb2+b3 + xb3 + · · ·+ xbn
...

∼ xb2+···+bn−1
+ xb3 + · · ·+ xbn

in J , and hence the idempotency of addition implies that the relation

gb̂1 + xb2+···+bn−1
∼ gb̂1

is in J . Combining this with (5) yields the desired relation g ∼ gb̂1 in J . Since the choice
of ordering of the bi was arbitrary, this shows that the bend relations of g are indeed all
contained in J . Using the bend relations of the type (1) elements once again, but this
time in the reverse of the direction we used them when passing from ν(f) to g, we have
the relation gb̂i ∼ ν(f)âi in J . Combined with the bend relations of g, this shows that
the bend relations ν(f) are entirely contained in J . �

3.5. The universal tropicalization

Let S be an idempotent semiring, ν : R→ S a semivaluation, and X a scheme over R.
Note that the universal embedding X ↪→ X̂ defined in §2.3 yields a tropicalization when
the F1-model M(X) of X̂ is locally integral. When X is irreducible, this is equivalent
to X being integral; indeed, this can be checked on sufficiently small affine patches by
[11, Proposition 3.1.3], and it holds there by Lemma 2.1.3. We therefore assume in this

section that X is integral and we will study its tropicalization in X̂.

Definition 3.5.1. The universal tropicalization of X, denoted Tropν
univ

(X), is the trop-

icalization of X with respect to the canonical closed embedding X ↪→ X̂.

Proposition 3.5.2. Let Y be an integral F1-scheme and ϕ : X ↪→ Y ×F1
R a closed

embedding. There is a canonical morphism of S-schemes Trop
univ

(X)→ Trop
ϕ

(X), and

it is natural in both X and (Y, ϕ).

P r o o f . This follows immediately from the functoriality of tropicalization [11, Proposi-

tion 6.4.1] and the universal property of the embedding X ↪→ X̂ described in Proposition
2.4.1. �

This proves the first part of Theorem B, and it is because of the above result that the
tropicalization of X in X̂ deserves to be called the universal tropicalization of X.
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Theorem 3.5.3. The universal tropicalization Tropν
univ

(X) represents the contravariant
functor on affine S-schemes sending Spec T to the set Val ν(X,T ) of semivaluations
X → T compatible with ν.

Thus the universal tropicalization is the algebraic moduli space of semivaluations
on X. When R is a field k, we obtain Theorem D from the introduction. Moreover,
when S is the tropical semiring T we obtain the set-theoretic bijection part of Theorem
A directly from this by passing to the set of T-points, since on the one hand these
are the points of the set-theoretic tropicalization, and on the other hand these are the
semivaluations X → T, i. e., the points of the Berkovich analytification; the part of the
theorem describing the Berkovich topology is explained and proven in §3.7 below.

P r o o f . [Proof of of Theorem 3.5.3] It suffices to assume that X = SpecA is affine. In
this case the universal tropicalization is

SpecM(A)⊗F1
S/Btrop(ker(ev)).

By Proposition 3.4.3, a T -point of this is a multiplicative map α : A→ T such that

α(λa) = ν(λ)α(a) for λ ∈ R and a ∈ A, (6)

and (using the fact that α(−c) = ν(−1)α(c) = α(c) from the equation above),

α(a) + α(b) + α(a+ b) = α(a) + α(b) (7)

= α(a) + α(a+ b)

= α(b) + α(a+ b).

The first condition (6) says that α is compatible with the semivaluation on k. In the
second condition, (7), the first equality is precisely the superadditivity condition for a
semivaluation. We now observe that the remaining two equalities are actually redundant
and so impose no additional conditions. We have α(a) + α(a+ b) = α(a) + α(−(a+ b)),
and by the first equality of (7) (applied with a and −(a+ b) instead of a and b), this is
equal to

α(a) + α(−(a+ b)) + α(a− (a+ b)) = α(a) + α(a+ b) + α(b).

Thus the second equality of (7) follows from the first, and by symmetry between a and b
the third one does as well. �

Note that if X = SpecA is an affine R-scheme, then

Tropν
univ

(SpecA) = SpecM(A)⊗F1 S/Btrop(ker ev)

is an affine S-scheme. Let us abbreviate its algebra of global functions SA.

Corollary 3.5.4. There is semivaluation w : A → SA that is universal among all
semivaluations compatible with ν in the following sense: given any semivaluation w′ :
A→ T compatible with ν, there is a unique homomorphism of S-algebras f : SA → T
such that w′ = f ◦ w.

The universal semivaluation sends a ∈ A to xa ∈M(A)⊗F1 S/Btrop(ker ev).
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3.6. An aside on the relation between universal valuations and universal
tropicalization

The universal tropicalization discussed above is defined using a fixed semivaluation ν
on the base R and the universal embedding of X, in contrast to the tropicalization

Tropν
R
univ

ϕ
(X) from [11, §6.5] which is defined with a fixed embedding and the universal

semivaluation νRuniv on R. The point of Theorem D (Theorem 3.5.3 and Corollary 3.5.4)
is that these two objects are closely related, as we now explain.

Given a ring A, one can consider the category of all semivaluations on A, and this
category contains an initial object given by the universal semivaluation νAuniv . If A is an
R-algebra, then one can also consider the subcategory of all semivaluations compatible
with a given semivaluation ν on R, and this subcategory contains an initial object taking
values in the coordinate algebra of the universal tropicalization (i. e., tropicalization of
the universal embedding).

Note that every semivaluation on A is compatible with the universal semivaluation
νRuniv on R. Hence, if we consider the universal tropicalization of SpecA with respect to
the universal semivaluation νRuniv on R, the coordinate algebra of the resulting object
will be the semiring in which the universal semivaluation on A takes values.

In geometric terms, the space of all semivaluations on R is (an enrichment of) the
Berkovich spectrum M(R), and the universal tropicalization of SpecA with respect to the
universal semivaluation on R can be viewed as the family of Berkovich analytifications
of SpecA parametrized by M(R).

3.7. The Berkovich topology as an algebraic topology

We now introduce the strong Zariski topology on a semiring scheme, and in the case
of a universal tropicalization we show that this topology coincides with the Berkovich
topology.

Let X be a scheme over S, viewed as a topological space with a structure sheaf. The
Zariski topology on the underlying set of X induces a Zariski topology on the S-points
X(S). Explicitly, an open immersion U ↪→ X determines a subset U(S) ⊂ X(S), and
every Zariski open subset is of this form.

Definition 3.7.1. Let X be an S-scheme. The strong Zariski topology on X(S) is the
topology whose closed subsets are of the form Z(S) for Z a closed subscheme of X.

Note that since the pullback of a closed subscheme is again a closed subscheme, a
morphism of schemes X → X ′ induces a map X(S) → X ′(S) that is continuous with
respect to the strong Zariski topology.

Proposition 3.7.2. If S is a ring then the strong Zariski topology and the ordinary
Zariski topology coincide, but in general the strong Zariski topology is finer than the
Zariski topology.

P r o o f . The strong Zariski closed subsets are defined by equations of the form f = g,
whereas Zariski closed subsets are defined by equations of the restricted form f = 0S . I.e.,
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Zariski closed subsets are given by ideals, while strong Zariski closed subsets are given by
congruences. Over a ring congruences and ideas are in bijection, and so it follows that
the strong Zariski topology and the Zariski topology on X(S) coincide. �

Remark 3.7.3. When S is not a ring then the two topologies can be distinct. For
example, over N the diagonal in A1 × A1 is strong Zariski closed but not Zariski closed
(cf. [7, §6.5.19]), and for A1(N) = N the strong Zariski topology is the finite complement
topology, while the only nontrivial Zariski closed subset is the singleton {0}.

Note that the structure sheaf OX is a sheaf with respect to the Zariski topology, but
not with respect to the strong Zariski topology.

The Euclidean topology on T is the topology for which the exponential map x 7→ e−x

gives a homeomorphism with R≥0. More generally, if Λ is a (possibly infinite) set then
the Euclidean topology on the product space TΛ is given by the product topology with
the Euclidean topology on each factor.

Lemma 3.7.4. Consider the affine space AΛ
T = Spec T[xi | i ∈ Λ]. The strong Zariski

topology on AΛ(T) = TΛ is exactly the Euclidean topology.

P r o o f . We first show that strong Zariski closed sets are also Euclidean closed. A
strong Zariski closed set Z is a (possibly infinite) intersection of principal strong Zariski
closed subsets V (f ∼ g) = {x ∈ TΛ | f(x) = g(x)}. Since a polynomial f ∈ T[xi | i ∈ Λ]
has only finitely many terms corresponding to a finite subset suppf ⊂ NΛ, its graph is
a finite type polyhedron Γf in Tsuppf × T crossed with TNΛrsuppf . The polyhedra Γf
and Γg are both Euclidean closed, so their intersection is, and hence the set V (f ∼ g) is
Euclidean closed. Therefore strong Zariski closed sets are Euclidean closed.

We now show that there is a basis for the Euclidean topology consisting of strong
Zariski open sets. A basis of open sets for the Euclidean topology is given by Euclidean
open boxes:

∏
i∈Λ Ji with each Ji an open interval in T, and all but finitely many of

them are the whole of T. Each Ji = (ai, bi) or (bi,∞] is strong Zariski open, as it is
the complement of the strong Zariski closed set V (xi + ai ∼ xi) ∩ V (xi + bi ∼ bi) or
V (xi + bi ∼ bi), respectively. �

Remark 3.7.5. As far as we are aware, this observation that closed subschemes generate
the Euclidean topology goes back originally to Mikhalkin in [26, Prop. 2.22].

Theorem 3.7.6. The strong Zariski topology on Trop
univ

(X) coincides with the Berkovich
topology.

P r o o f . Since Trop
univ

(X) has an open cover by subschemes of the form Trop
univ

(U)
for U an affine open subscheme of X, it suffices to assume that X is affine. The claim
follows directly from Lemma 3.7.4 and the fact that the Berkovich topology on Xan

coincides with the subspace topology it gets from the natural inclusion into Tk[X]. �

Example 3.7.7. Let k be an algebraically closed field that is complete with respect to
a non-archimedean absolute value | − |. Consider (A1

k)an ; the points of this space are
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semivaluations on k[t] that are compatible with the absolute value on k. Given a ∈ k
and r ∈ R>0, a Berkovich open disk is a subset or the form

Dan(a, r) = {ν | e−ν(t−a) < r}.

A fundamental system of neighborhoods for the Berkovich topology is given by the finite
intersections of these Berkovich open disks. The complement of an open disk Dan(a, r)c

is the strong Zariski closed set defined by the equation

(− log r)x1 = (− log r)x1 + xt−a,

where x1 is the multiplicative unit.

3.8. The map from the analytification to a tropicalization

Let Y be a locally integral F1-scheme and X a k-scheme with a closed embedding
ϕ : X ↪→ Y ×F1

k. Given a rank-one valuation ν : k → T, there is a canonical map π
from the Berkovich analytification to the set-theoretic tropicalization of X with respect
to ϕ,

π : Xan → trop
ϕ

(X).

This is a slight generalization of the map constructed by Payne in [29]. It can be
described on a suitable affine patch as follows. Suppose X is given by SpecA for some
k-algebra A, the F1-scheme Y is SpecB for some F1-algebra B, and the embedding ϕ is
given by a surjective homomorphism ϕ] : B ⊗F1 k � A. A point of the analytification
is a semivaluation w : A → T compatible with ν, and a point of the set-theoretic
tropicalization is a T-algebra homomorphism q : B ⊗F1

T → T such that for each∑
λixbi ∈ kerϕ], the minimum of the set {q(ν(λi)xbi)} is either equal to ∞ or is

attained at least twice. Given a point w ∈ (SpecA)an, the composition

B ↪→ B ⊗F1
k
ϕ]→ A

w→ T

is multiplicative and so determines a T-algebra homomorphism π(w) : B ⊗F1 T→ T.

Proposition 3.8.1. The homomorphism π(w) lies in trop
ϕ

(X).

P r o o f . Let f =
∑
λixbi be an element in the kernel of ϕ], so w ◦ ϕ](

∑
λixbi) = ∞.

On the other hand, taking the coefficient-wise valuation, ν(f) =
∑
ν(λi)xbi , and so

π(w)(ν(f)) =
∑

ν(λi)w ◦ ϕ](xbi)

=
∑

w ◦ ϕ](λixbi).

Thus we have
∞ = w ◦ ϕ](

∑
λixbi) ≥

∑
w ◦ ϕ](λixbi). (8)

Since w ◦ϕ] : B⊗F1
k → T is a semivaluation and T is totally ordered, a strict inequality

w ◦ ϕ](a+ b) > w ◦ ϕ](a) + w ◦ ϕ](b)
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implies w ◦ ϕ](a) = w ◦ ϕ](b), and so we can conclude from the above inequality (8) that
the minimum of {w ◦ ϕ](λixbi)} ⊂ T occurs at least twice (or there is only a single term
and it is∞). This shows that π(w) is indeed in the set-theoretic tropicalization trop

ϕ
(X).

�

Proposition 3.8.2. Upon passing to T-points, the canonical map of T-schemes

Trop
univ

(X)→ Trop
ϕ

(X)

reduces to the map π : Xan → trop
ϕ

(X).

P r o o f . This is just a mater of unwinding the definitions. Proposition 2.4.1 provides
the canonical map X̂ → Y ×F1

k for which we have a commuting diagram,

X

X̂ Y ×F1
k.

zz $$

ϕ

//π̂

By restricting attention to suitable affine patches, this diagram is represented at the level
of k-algebras by a diagram

A

M(A)⊗F1
k B ⊗F1 k,

::
ev

oo π̂]

dd
ϕ]

for a k-algebra A and an F1-algebra B. The bottom arrow π̂] in this diagram is induced
by the morphism of F1-algebras

ϕ[ : B →M(A)

that is adjoint to ϕ]; i. e., ϕ[ sends xb ∈ B ⊗F1 k to ϕ](xb) (thought of as an element of
M(A)). The associated morphism of tropicalizations,

B ⊗F1 T/Btrop(kerϕ])→M(A)⊗F1 T/Btrop(ker ev)

is also induced by ϕ[. Consider a T-point

w : M(A)⊗F1
T/Btrop(ker ev)→ T

of the universal tropicalization; it is entirely determined by the morphism of F1-algebras
w[ : M(A) → M(T) given by restricting w to monomials. The map Trop

univ
(X) →

Trop
ϕ

(X) sends w to the T-point corresponding to the composition of F1-algebra mor-

phisms

B
ϕ[→M(A)

w[→M(T),

and one easily sees that this agrees with the description of π(w) we gave above. �

By assembling Proposition 3.5.2, Theorem 3.5.3, and the above proposition, we have
proven Theorem B from the introduction.
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4. LIMITS OF TROPICALIZATIONS

Fix an integral scheme X over a valued ring ν : R→ S, and let C denote the category of
‘locally integral F1-embeddings of X’; that is, an object of C is a locally integral F1-scheme
Y together with a closed embedding X ↪→ Y ×F1

R, and a morphism is a morphism of
F1-schemes inducing a commutative triangle of R-schemes. By [11, Proposition 6.4.1],
scheme-theoretic tropicalization yields a covariant functor Trop•(X) : C→ SchS .

Because of its universal property (Proposition 2.4.1), the universal embedding X ↪→ X̂
is an initial object in C. Thus we trivially have that the universal tropicalization is the
limit over C of all tropicalizations of X.

Proposition 4.0.1. There is a canonical isomorphism,

lim
ϕ∈C

Trop
ϕ

(X) ∼= Trop
univ

(X).

It is more interesting to consider the limit over certain subcategories of C, such
as the subcategory CA of all embeddings into affine spaces An (for varying finite n)
and torus-equivariant morphisms. Payne showed that if X is an affine variety, then
the limit over CA of the set-theoretic tropicalizations of X (considered as topological
spaces) is homeomorphic to Xan [29, Theorem 1.1]. In the following section we give a
scheme-theoretic refinement of this theorem.

4.1. Affine embeddings

Let X = Spec A, for A a finitely generated R-algebra. The category C
op
A admits the

following explicit algebraic description.

• Objects: Finitely generated free F1-algebras (i. e., finite rank free abelian monoids-
with-zero) B equipped with a surjective R-algebra homomorphism B ⊗F1

R� A;
equivalently, there is a specified F1-algebra homomorphism B → M(A) whose
image generates A as an R-algebra.

• Arrows: Homomorphisms of F1-algebras B1 → B2 whose scalar extension commutes
with the maps Bi ⊗F1 R� A; equivalently, these are F1-algebra homomorphisms
over M(A).

Functoriality of tropicalization therefore gives in this case a functor CA → SchS , or
C

op
A → S-alg.

Theorem 4.1.1. Let A be a finitely generated integral R-algebra, and suppose R is
equipped with a semivaluation ν : R→ S. The universal tropicalization of X = SpecA
is isomorphic as an S-scheme to the limit of tropicalizations in affine spaces:

Tropν
univ

(X) ∼= lim
ϕ∈CA

Tropν
ϕ

(X).

We begin with a lemma, which is used to show that the limit is embedded in the
affine S-scheme SpecM(A)⊗F1

S. It says that the limit of the affine spaces in which X

embeds is X̂. Let F : Cop
A → F1-alg be the forgetful functor sending B ⊗F1 R� A to B.
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Lemma 4.1.2. colimC
op
A
F ∼= M(A).

P r o o f . First, note that the colimit exists because the category of abelian monoids is
cocomplete and the colimit of a diagram of monoids-with-zero clearly has a zero element
and is the colimit in the subcategory of monoids-with-zero. Let Z denote this colimit.
Since arrows in C

op
A are F1-algebra morphisms over M(A), the universal property of the

colimit yields a canonical morphism of F1-algebras Z →M(A). We show that this map
is surjective and injective.

To show that each a ∈M(A) is in the image of Z →M(A), it suffices to show that
there is an object B ⊗F1

R � A of Cop
A whose restriction B → M(A) contains a in its

image. Any finite set S ⊂ A of R-algebra generators containing a yields a surjection
F1[x1, . . . , x|S|]⊗F1 R = R[x1, . . . , x|S|] � A with the desired property.

Now we prove injectivity. Suppose a ∈ A and a1, a2 ∈ Z are two elements that both
map to a. Each ai can be represented by an element a′i in some finitely generated free
F1-algebra F1[Si] over M(A), and without loss of generality we can assume a′i ∈ Si. Let
T := S1 ∪a′1∼a′2 S2. We have a set-map T → A induced by the maps Si → A, since a′1 and
a′2 have the same image in A. These maps Si → A factor through the inclusions Si ↪→ T,
so the image of T in A generates A as a R-algebra, and hence F1[T]→M(A) is an object
of Cop

A . Moreover, the inclusions Si ↪→ T induce arrows in C
op
A under which a′1 and a′2

are identified. Applying the functor F to these two arrows yields a pair of F1-algebra
morphisms F1[Si] → F1[T] for which the images of a′1 with a′2 coincide, and hence the
images of these elements in the colimit Z must be identified as well; i. e., a1 = a2 in Z.

�

We now turn to the proof of Theorem 4.1.1.

P r o o f . Let G : Cop
A → S-alg be the functor sending an affine embedding to the algebra

of global sections of the structure sheaf of the corresponding tropicalization:

(B ⊗F1
R

ψ
� A) 7→ B ⊗F1

S/Btrop(kerψ).

We must show that V := colimC
op
A
G is isomorphic to W := M(A)⊗F1

S/Btrop(ker ev).
Functoriality of tropicalization applied to Proposition 2.4.1 yields, by the universal
property of the colimit, a canonical map of S-algebras V →W . Since colimits commute
with tensor products and quotients, it follows from Lemma 4.1.2 that V is a quotient of
M(A)⊗F1

S, say by a congruence J . Then, since the map

V = M(A)⊗F1
S/J →M(A)⊗F1

S/Btrop(ker ev) = W

is induced by the identity on M(A), we see that it is surjective and J ⊂ Btrop(ker ev).
We will show that this inclusion on congruences is an equality, i. e., that every relation in
the universal tropicalization appears at some stage of the colimit diagram.

By Proposition 3.4.3, it suffices to consider the bend relations coming from the two
types of basis elements of the kernel of the evaluation map described in Proposition 2.1.4.
Let a, b, c ∈ A satisfy a + b + c = 0, and consider the congruence B(xa + xb + xc) on
M(A)⊗F1 S. Choose a set S ⊂ A of R-algebra generators containing a, b, c, corresponding
to an object ψ : F1[S]⊗F1 R� A of Cop

A . Then xa + xb + xc ∈ kerψ, so the congruence
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Btrop(kerψ), which defines the tropicalization G(ψ), contains the bend relations of
xa + xb + xc ∈ F1[S] ⊗F1

S. Since the isomorphism in Lemma 4.1.2 is induced by the
structure maps in the objects of C

op
A , the map G(ψ) → V sends this polynomial to

xa + xb + xc in M(A) ⊗F1
S. Thus the bend relations B(xa + xb + xc) are contained

in the colimit congruence J . Similarly, for λ ∈ R and a ∈ A, an R-algebra generating
set T ⊂ A containing a and λa yields an object γ : F1[T] ⊗F1 R � A of Cop

A satisfying
λxa + xλa ∈ ker γ. In the congruence defining the tropicalization G(γ) we thus have the
bend relation ν(λ)xa ∼ xλa, and hence this also holds in the colimit congruence J . �
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[28] M. Mustata and J. Nicaise: Weight functions on non-Archimedean analytic spaces and the
Kontsevich–Soibelman skeleton. arXiv:1212.6328, 2013.

[29] S. Payne: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16 (2009), 3,
543–556. DOI:10.4310/MRL.2009.v16.n3.a13

[30] S. Payne: Fibers of tropicalization. Math. Z. 262 (2009), 2, 301–311. DOI:10.1007/s00209-
008-0374-x

[31] P. Popescu-Pampu and D. Stepanov: Local tropicalization. In: Algebraic and combinatorial
aspects of tropical geometry, Contemp. Math. 589, Amer. Math. Soc., Providence 2013,
pp. 253–316. DOI:10.1090/conm/589/11748

[32] J. Richter-Gebert, B. Sturmfels, and T. Theobald: First steps in tropical geometry. In:
Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math.
Soc., Providence 2005, pp. 289–317.

https://doi.org/10.1007/0-8176-4467-9_9
http://www.ihes.fr/~maxim/TEXTS/Non-archimedean%20Kahler%20geometry.pdf
http://www.ihes.fr/~maxim/TEXTS/Non-archimedean%20Kahler%20geometry.pdf
https://doi.org/10.1112/S0010437X17008004
https://doi.org/10.4171/jems/932
https://doi.org/10.4310/MRL.2009.v16.n3.a13
https://doi.org/10.1007/s00209-008-0374-x
https://doi.org/10.1007/s00209-008-0374-x
https://doi.org/10.1090/conm/589/11748


Universal tropicalization 815

[33] M. Temkin: Relative Riemann–Zariski spaces. Israel J. Math. 185 (2011), 1–42.
DOI:10.1007/s11856-011-0099-0
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