Kybernetika 58 no. 5, 760-778, 2022

Tolerance problems for generalized eigenvectors of interval fuzzy matrices

Martin Gavalec, Helena Myšková, Ján Plavka and Daniela PonceDOI: 10.14736/kyb-2022-5-0760


Fuzzy algebra is a special type of algebraic structure in which classical addition and multiplication are replaced by maximum and minimum (denoted $ \oplus $ and $ \otimes $, respectively). The eigenproblem is the search for a vector $x$ (an eigenvector) and a constant $\lambda$ (an eigenvalue) such that $A\otimes x=\lambda\otimes x$, where $A$ is a given matrix. This paper investigates a generalization of the eigenproblem in fuzzy algebra. We solve the equation $A\otimes x = \lambda\otimes B\otimes x$ with given matrices $A,B$ and unknown constant $\lambda$ and vector $x$. Generalized eigenvectors have interesting and useful properties in the various computational tasks with inexact (interval) matrix and vector inputs. This paper studies the properties of generalized interval eigenvectors of interval matrices. Three types of generalized interval eigenvectors: strongly tolerable generalized eigenvectors, tolerable generalized eigenvectors and weakly tolerable generalized eigenvectors are proposed and polynomial procedures for testing the obtained equivalent conditions are presented.


interval generalized eigenvector, fuzzy matrix


08A72, 90B35, 90C47, 90C15


  1. M. Gavalec: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.   CrossRef
  2. M. Gavalec and K. Zimmermann: Solving systems of two-sided (max,min)-linear equations. Kybernetika 46 (2010), 405-414.   DOI:10.1007/s11135-010-9378-9
  3. M. Gavalec, J. Plavka and D. Ponce: Tolerance types of interval eigenvectors in max-plus algebra. Inform. Sci. 367 (2016), 14-27.   DOI:10.1016/j.ins.2016.05.023
  4. M. Gavalec, M. Gad and K. Zimmermann: Optimization problems under (max,min)-linear equations and/or inequality constraints. J. Math. Sci. 193 (2013), 645-658.   DOI:10.1007/s10958-013-1492-5
  5. M. Gavalec, J. Ramík and K. Zimmermann: Interval eigenproblem in max-min algebra. In: Decision Making and Optimization, Springer 2015, pp. 163-181.   DOI:10.1007/978-3-319-08323-0\_5
  6. M. Gavalec and Z. Němcová: Steady states of max-Łukasiewicz fuzzy systems. Fuzzy Sets and Systems 325 (2017), 58-68.   DOI:10.1016/j.fss.2017.02.005
  7. M. Gavalec, J. Plavka and D. Ponce: Strong tolerance of interval eigenvectors in fuzzy algebra. Fuzzy Sets Systems 369 (2019), 145-156.   DOI:10.1016/j.fss.2018.11.015
  8. J. S. Golan: Semirings and Their Applications. Springer, 1999.   CrossRef
  9. B. Heidergott, G.-J. Olsder and J. van der Woude: Max-plus at Work. Princeton University Press, 2005.   CrossRef
  10. V. N. Kolokoltsov and V. P. Maslov: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997.   CrossRef
  11. M. Gondran and M. Minoux: Graphs, Dioids and Semirings: New Models and Algorithms. Springer 2008   CrossRef
  12. M. Molnárová, H. Myšková and J. Plavka: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 3350-3364.   DOI:10.1016/j.laa.2012.12.020
  13. H. Myšková and J. Plavka: X-robustness of interval circulant matrices in fuzzy algebra. Linear Algebra Appl. 438 (2013), 2757-2769.   DOI:10.1016/j.laa.2012.11.026
  14. H. Myšková and J. Plavka: The robustness of interval matrices in max-plus algebra. Linear Algebra Appl. 445 (2014), 85-102.   DOI:10.1016/j.laa.2013.12.008
  15. J. Plavka: l-parametric Eigenproblem in max-algebra. Discrete Appl. Math. 150 (2005), 16-28.   DOI:10.1016/j.dam.2005.02.017
  16. J. Plavka: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 128-140.   CrossRef
  17. J. Plavka: Computing the greatest {\bf X}-eigenvector of a matrix in max-min algebra. Kybernetika 52 (2016), 1-14.   DOI:10.14736/kyb-2016-1-0001
  18. J. Plavka and S. Sergeev: Characterizing matrices with $\bf{X}$-simple image eigenspace in max-min semiring. Kybernetika 52 (2016), 497-513.   DOI:10.14736/kyb-2016-4-0497
  19. J. Plavka and M. Gazda: Generalized eigenproblem of interval max-min (fuzzy) matrices. Fuzzy Sets Systems 410 (2021), 27-44.   DOI:10.1016/j.fss.2020.09.006
  20. E. Sanchez: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74.   DOI:10.1016/0165-0114(78)90033-7
  21. K. Zimmermann: Extremální algebra (in Czech). Ekon. ústav ČSAV Prague, 1976.   CrossRef