
K Y B E R N E T I K A — V O L U M E 5 8 ( 2 0 2 2 ) , N U M B E R 5 , P A G E S 7 6 0 – 7 7 8

TOLERANCE PROBLEMS FOR GENERALIZED
EIGENVECTORS OF INTERVAL FUZZY MATRICES

Martin Gavalec, Helena Myšková, Ján Plavka and Daniela Ponce

Fuzzy algebra is a special type of algebraic structure in which classical addition and mul-
tiplication are replaced by maximum and minimum (denoted ⊕ and ⊗, respectively). The
eigenproblem is the search for a vector x (an eigenvector) and a constant λ (an eigenvalue) such
that A⊗ x = λ⊗ x, where A is a given matrix. This paper investigates a generalization of the
eigenproblem in fuzzy algebra. We solve the equation A⊗x = λ⊗B⊗x with given matrices A,B
and unknown constant λ and vector x. Generalized eigenvectors have interesting and useful
properties in the various computational tasks with inexact (interval) matrix and vector inputs.
This paper studies the properties of generalized interval eigenvectors of interval matrices. Three
types of generalized interval eigenvectors: strongly tolerable generalized eigenvectors, tolera-
ble generalized eigenvectors and weakly tolerable generalized eigenvectors are proposed and
polynomial procedures for testing the obtained equivalent conditions are presented.
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1. INTRODUCTION

Fuzzy algebra is a triple (I,⊕,⊗), where I = [O, I] is a linearly ordered set with the
least element O and the greatest element I and ⊕,⊗ are binary operations defined as
follows: a⊕ b = max(a, b) and a⊗ b = min(a, b).
Given natural numbersm and n, we shall writeM = {1, 2, . . . , m} andN = {1, 2, . . . , n}.
The set of m × n matrices (m × 1 vectors) over I will be denoted by I(m,n), (I(m)).
Similarly to classical linear algebra the operations ⊕,⊗ can be extended to the matrix-
vector algebra over I.

For A, B ∈ I(m,n), define A ≤ B if aij ≤ bij holds true for any i ∈ M, j ∈ N .
Both operations in fuzzy algebra are idempotent, so no new numbers are created in the
process of matrix-vector multiplication.
Let L be a subset of I. Then L⊕ ∈ L is called greatest element of L if for every x ∈ L
the inequality x ≤ L⊕ holds.

A vector x ∈ I(n) which satisfies A ⊗ x = λ ⊗ B ⊗ x for some λ ∈ I is called a
generalized eigenvector of the matrices A, B ∈ I(m,n).
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The matrices in a fuzzy algebra and the investigation of the properties of generalized
eigenvectors are useful for applications in knowledge engineering, scheduling, graph the-
ory and modeling of fuzzy discrete dynamic systems [1, 8, 9, 10, 11]. They are helpful
for describing diagnoses of technical devices [21], medical diagnoses [20] or fuzzy logic
programming. In practice, the values of the vector and the matrix inputs can be con-
sidered as values in some intervals rather than exact numbers. The aim of this paper is
to present equivalent conditions for an interval vector to be a generalized eigenvector.
We also provide effective procedures for determining the strong tolerance, tolerance and
weak tolerance of generalized interval eigenvectors.

The following example is a generalization of the example presented in [7] and is one
motivation for studying the generalized eigenproblem.

Example 1.1. Consider a computer network consisting of three servers S1, S2 and S3,
three backup servers S′1, S′2 and S′3, data storage units D1, D2, D′1, D′2, and a logical
unit L. The lines Aij , i ∈ {1, 2, 3}, j ∈ {1, 2} connect every Si with every Dj , and the
lines Bij , i ∈ {1, 2, 3}, j ∈ {1, 2} connect every S′i with every D′j . Moreover, lines Lj and
L′j connect L with every Dj and D′j , respectively. The security level of each line in the
network is measured by values in the real interval [O, I]. The security of every Aij (data
security) is denoted by aij , the security of Bij is denoted by bij , while the securities of
L1, L2 and L′1, L′2 (logic securities) are denoted by x1, x2 and y1, y2, respectively. The
maximal security levels u1, u2, u3 from servers S1, S2, S3 to the logical unit L via D1

and/or D2 are given by

u1 = max
(
min(a11, x1),min(a12, x2)

)
u2 = max

(
min(a21, x1),min(a22, x2)

)
u3 = max

(
min(a31, x1),min(a32, x2)

)
and the maximal security levels v1, v2, v3 from servers S′1, S′2 and S′3 to the logical unit
L via D′1 and/or D′2 are given by

v1 = max(min(b11, y1),min(b12, y2)
)

v2 = max(min(b21, y1),min(b22, y2)
)

v3 = max(min(b31, y1),min(b32, y2)
)
.

The aim of the model is to achieve the synchronization of the security levels of the lines
connecting the data storage units D1, D2 with the logical unit L preserved for the lines
connecting the servers S1, S2, S3 with L and the security levels of the lines connecting
the data storage units D′1, D

′
2 with the logical unit L preserved for the lines connecting

the servers S′1, S
′
2, S′3 with L. Then the maximal security levels u1, u2, u3 must be equal

to another maximal security levels v1, v2, v3. For practical reasons, the reduction to a
fixed level λ is usually used; that is, y1 = min(λ, x1), y2 = min(λ, x2). Then, in max-min
notation we have

(a11 ⊗ x1)⊕ (a12 ⊗ x2) = (b11 ⊗ λ⊗ x1)⊕ (b12 ⊗ λ⊗ x2)

(a21 ⊗ x1)⊕ (a22 ⊗ x2) = (b21 ⊗ λ⊗ x1)⊕ (b22 ⊗ λ⊗ x2)

(a31 ⊗ x1)⊕ (a32 ⊗ x2) = (b31 ⊗ λ⊗ x1)⊕ (b32 ⊗ λ⊗ x2) .
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Applying the matrix-vector multiplication, we get a11 a12
a21 a22
a23 a32

⊗ ( x1
x2

)
= λ⊗

 b11 b12
b21 b22
b31 b32

⊗ ( x1
x2

)

and hence

A⊗ x = λ⊗B ⊗ x . (1)

The vector x and number λ satisfying (1) are called the generalized eigenvector and a
generalized eigenvalue of (A,B), respectively.

The paper is organised as follows. Section 2 is devoted to the definitions and basic
properties of the generalized eigenproblem and to conditions for the existence of a gen-
eralized eigenvector. Section 3 gives the definitions of three types of interval generalized
eigenvector. In Sections 4, 5 and 6, the equivalent conditions for a generalized eigenvec-
tor to be strongly tolerable, tolerable or weakly tolerable are presented. Based on the
the conclusions we will obtain the polynomial complexity of procedures which check the
equivalent conditions claimed in Theorem 3.2, Theorem 4.4 and Theorem 5.2.

Note that this paper is related to [19] which deals with other types of interval general-
ized eigenvector and gives efficient equivalent conditions for checking them. [17] presents
a polynomial procedure for computing the maximal element of the eigenspace.

A matrix A is strongly robust if its greatest eigenvector can be achieved starting in
any vector. Results on the strong robustness have been introduced in [12, 13, 14, 16,
18]. Polynomial procedures for checking the reachability of an eigenspace of A starting
only from the eigenspace of A are described in [16]. The properties of X-simple image
eigenspace of A are described in [18].

2. GENERALIZED EIGENVECTORS

For given A, B ∈ I(m,n), the generalized eigenproblem for the pair (A,B) is defined as
the task of finding x ∈ I(n) (generalized eigenvector) and λ ∈ I (generalized eigenvalue)
such that (1) is satisfied. The generalized eigenspace of (A,B) with the given generalized
eigenvalue λ is denoted by

V (A,B, λ) = {x ∈ I(n); A⊗ x = λ⊗B ⊗ x}. (2)

Lemma 2.1. (Plavka and Gazda [19]) Suppose A, B ∈ I(m,n) are given. Then the
following assertions hold

(i) Any λ ∈ I is an eigenvalue of (A,B).

(ii) V (A,B, λ) 6= ∅ for any A,B ∈ I(m,n) and for any λ ∈ I.
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Notice that the second assertion trivially holds since zero vector is still a solution of
A⊗ x = λ⊗B ⊗ x.

Denote the greatest element of V (A,B, λ) by x⊕(A,B, λ):

x⊕(A,B, λ) =
⊕

x∈V (A,B,λ)

x. (3)

It has been shown in [2] that the greatest solution of the max-min linear system A⊗x =
λ ⊗ B ⊗ x (which is equal to the greatest generalized eigenvector x⊕(A,B, λ)) exists
for any pair of matrices (A,B) and for any λ ∈ I. The complexity of computing it is
O(mn ·min(m,n)).

2.1. Versions of generalized eigenvectors

Analogously to [5, 6, 7, 12, 13, 15] consider interval matrices A with bounds A,A ∈
I(m,n), B with bounds B,B ∈ I(m,n) and an interval vector with bounds x, x ∈ I(n)
which are defined as follows

A = [A,A] =
{
A ∈ I(m,n); A ≤ A ≤ A

}
,

B = [B,B] =
{
B ∈ I(m,n); B ≤ B ≤ B

}
,

X = [x, x] = {x ∈ I(n); x ≤ x ≤ x } .

We shall consider the following three versions of generalized eigenvectors.

Definition 2.2. Suppose given A, B ⊆ I(m,n) and X ⊆ I(n). Then X is called

• a strongly tolerable generalized eigenvector of (A,B) if there exist λ ∈ I, A ∈ A
and B ∈ B such that x ∈ V (A,B, λ) for each x ∈X;

• a tolerable generalized eigenvector of (A,B) if there exist λ ∈ I and A ∈ A such
that for each x ∈X there exists B ∈ B such that x ∈ V (A,B, λ);

• a weakly tolerable generalized eigenvector of (A,B) if there exists λ ∈ I such that
for each x ∈X there exist A ∈ A and B ∈ B such that x ∈ V (A,B, λ).

The investigated types can be interpreted as follows. In general, the interval vector
X is a tolerable eigenvector of (A,B) if there exists eigenvalue λ ∈ I and A ∈ A such
that every vector x ∈X synchronizes the security levels of the model (see Example 1.1)
with some matrix B ∈ B (in other words: B tolerates x with eigenvalue λ and some
matrix A).

If there are common tolerating matrices A ∈ A, B ∈ B for all vectors x ∈ X, then
the interval vector X is called strongly tolerable. Otherwise, the tolerating matrices A,
B depend on x, then the interval eigenvector X is called weakly tolerable.

Remark 2.3. There are a number of different types of interval eigenvector in the lit-
erature, with different orderings of quantifiers. [19] is the first one to study generalized
eigenvectors. This paper studies three other types of generalized eigenvector; the re-
maining types are not studied here, and they are left as a challenge for further research.
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Suppose given i ∈M, j ∈ N . Define the matrix A(ij) ∈ I(m,n) and vector x(i) ∈ I(n)
(called generators) by setting

a
(ij)
kl =

{
aij , for k = i, l = j

akl, otherwise
, x

(i)
k =

{
xi, for k = i

xk, otherwise

for all k ∈M, l ∈ N .

Lemma 2.4. (Plavka and Gazda [19]) Suppose x ∈ I(n) and A ∈ I(n, n) are given.
Then

(i) x ∈X if and only if x =
⊕
i∈N

βi ⊗ x(i) for some values βi ∈ I with xi ≤ βi ≤ xi ,

(ii) A ∈ A if and only if A =
⊕

i∈M, j∈N
αij ⊗ A(ij) for some values αij ∈ I with

aij ≤ αij ≤ aij .

3. STRONGLY TOLERABLE GENERALIZED EIGENVECTORS

Theorem 3.1. Suppose A, B and X are given. Then X is a strongly tolerable gen-
eralized eigenvector of (A,B) if and only if there are λ ∈ I, A ∈ A and B ∈ B such
that

A⊗ x(k) = λ⊗B ⊗ x(k) for every k ∈ N. (4)

P r o o f . Suppose that λ ∈ I, A ∈ A and B ∈ B and (4) is fulfilled. Let x ∈ X.
Then by Lemma 2.4 (i), for each k ∈ N there exists γk ∈ I such that xk ≤ γk ≤ xk,
x =

⊕
k∈N γk ⊗ x(k) and

A⊗ x = A⊗

(⊕
k∈N

γk ⊗ x(k)
)

=
⊕
k∈N

(
A⊗ γk ⊗ x(k)

)
=
⊕
k∈N

γk ⊗
(
A⊗ x(k)

)
=
⊕
k∈N

γk ⊗ (λ⊗B ⊗ x(k)) = λ⊗B ⊗ x.

Hence, X is a strongly tolerable generalized eigenvector of (A, B). The converse impli-
cation trivially holds. �

To decide on the existence of A ∈ A and B ∈ B satisfying (4), for each i ∈M, j ∈ N
define the vectors C̃(ij) ∈ I(mn) and D̃(ij) ∈ I(mn) as follows:

C̃(ij) =


A(ij) ⊗ x(1)
A(ij) ⊗ x(2)

...
A(ij) ⊗ x(n)

 , D̃(ij) =


B(ij) ⊗ x(1)
B(ij) ⊗ x(2)

...
B(ij) ⊗ x(n)

 . (5)



Tolerance problems for generalized eigenvectors of interval fuzzy matrices 765

Write
C̃ =

(
C̃(11), . . . , C̃(1n), C̃(21), . . . , C̃(2n), . . . , C̃(mn)

)
,

D̃ = (D̃(11), . . . , D̃(1n), D̃(21), . . . , D̃(2n), . . . , D̃(mn))

and consider the fuzzy linear system

C̃ ⊗ y = λ⊗ D̃ ⊗ z (6)

where λ ∈ I is fixed, the columns of C̃ ∈ I(mn,mn) are C̃(ij), the columns of D̃ ∈
I(mn,mn) are D̃(ij) and the variable vectors y (z) ∈ I(mn, 1) are built from the variables
y(ij) (z(ij)) i ∈M, j ∈ N .

Theorem 3.2. Suppose given A, B and X. An interval vector X is a strongly tolerable
generalized eigenvector of (A,B) if and only there exists λ ∈ I such that the system
C̃ ⊗ y = λ⊗ D̃ ⊗ z has a solution (y, z) satisfying inequalities

aij ≤ y(ij) ≤ aij , bij ≤ z(ij) ≤ bij (7)

for any i ∈M, j ∈ N .

P r o o f . Suppose that there are y and z satisfying (6) and (7). Then for the matrices
A ∈ I(m,n), B ∈ I(m,n) defined by

A =
⊕

i∈M,j∈N
y(ij) ⊗A(ij), B =

⊕
i∈M,j∈N

z(ij) ⊗B(ij), (8)

we obtain A ∈ A and B ∈ B, according to Lemma 2.4 (ii).
Therefore, from (6), for every fixed k ∈M we obtain⊕

i∈M,j∈N

(
A(ij) ⊗ x(k)

)
⊗ y(ij) = λ⊗

⊕
i∈M,j∈N

(
B(ij) ⊗ x(k)

)
⊗ z(ij), ⊕

i∈M,j∈N
y(ij) ⊗A(ij)

⊗ x(k) = λ⊗

 ⊕
i∈M,j∈N

z(ij) ⊗B(ij)

⊗ x(k),
A⊗ x(k) = λ⊗B ⊗ x(k).

Hence, according to Theorem 3.1, X is a strongly tolerable generalized eigenvector of
(A, B).

To prove the converse implication, a strongly tolerable generalized eigenvector X
of (A, B) implies the existence of λ ∈ I, A ∈ [A,A]) and B ∈ [B,B]) such that
A ⊗ x(k) = λ ⊗ B ⊗ x(k) for any k ∈ N . By Lemma 2.4(ii), there are αij , βij ∈ I,
i ∈ M, j ∈ N such that A =

⊕
i∈M,j∈N αij ⊗ A(ij), B =

⊕
i∈M,j∈N βij ⊗ B(ij) and

aij ≤ αij ≤ aij , bij ≤ βij ≤ bij . Then y, z ∈ I(mn) satisfy (6) and (7), where
y(ij) = αij , z(ij) = βij for any i ∈M, j ∈ N . �

In view of [4], the system C̃ ⊗ y = λ ⊗ D̃ ⊗ z can be transformed to a system with
the same variables on both sides as follows:
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(C̃, Õ)⊗
(
y
z

)
= λ⊗ (Õ, D̃)⊗

(
y
z

)
, (9)

where (C̃, Õ) ∈ I(mn, 2mn) and (Õ, D̃) ∈ I(mn, 2mn) and Õ is mn×mn matrix with
every entry equal to O.

The efficient algorithm for solvability of the system R⊗x = λ⊗S⊗y for R, S ∈ I(k, l)
with the computational complexity O(kl · min(k, l)) has been presented in [4]. Taking
into consideration that the dimension of the coefficient matrices (C̃, Õ) (Õ, D̃) in (9) is
mn× 2mn, we get the following result.

Theorem 3.3. The complexity of a procedure for checking whether X is a strongly
tolerable generalized eigenvector of (A,B) for |I| = ` is equal to O(` ·m3n3).

P r o o f . Using Theorem 3.2, the computation of C̃, D̃ in (6) requires computing A(ij)⊗
x(k), B(ij) ⊗ x(k) for all i ∈ M, j, k ∈ N in O(mn) time each. Thus, the computation
of C̃, D̃ requires O(m2n3) time similarly as computing the remaining data in (6), (7).
Hence, if |I| = `, then the solvability of (9) can be computed in ` · O(m3n2) + ` ·
O(m3n3)=O(` ·m3n3) time since each λ ∈ I is checked independently. �

4. TOLERABLE GENERALIZED EIGENVECTORS

For given matrices A = (aij) ∈ A, B = (bij) ∈ B, a given vector x = (x1, . . . , xn)T ∈
I(n), i ∈M and a given value λ ∈ I we shall use the notation

ai(x) = max
j∈N

(aij ⊗ xj) =
[
A⊗ x

]
i
,

bi(x) = max
j∈N

(bij ⊗ xj) =
[
B ⊗ x

]
i
.

In particular, for A = A and B = B

ai(x) = max
j∈N

(aij ⊗ xj) =
[
A⊗ x

]
i
,

bi(x) = max
j∈N

(bij ⊗ xj) =
[
B ⊗ x

]
i
.

Furthermore, define Ax =
(
axij
)
∈ I(m,n) and Bx =

(
bxij
)
∈ I(m,n) by putting

axij =

aij if aij ⊗ xj ≤ λ⊗max
j∈N

(bij ⊗ xj),

λ⊗max
j∈N

(bij ⊗ xj) otherwise,
(10)

bxij =

bij if λ⊗ bij ⊗ xj ≤ max
j∈N

(aij ⊗ xj),

max
j∈N

(aij ⊗ xj) otherwise.
(11)
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Lemma 4.1. Assume x ∈ I(n) and λ ∈ I. Then Ax ⊗ x = λ⊗Bx ⊗ x.

P r o o f . Let x ∈ I(n) and λ ∈ I be fixed. We have to show
[
Ax⊗x

]
i

= λ⊗
[
Bx⊗x

]
i
,

for all i ∈M . Take fixed i ∈M and consider two cases.
First, suppose ai(x) ≤ λ⊗ bi(x). Then

axi (x) =
⊕
j∈N

axij ⊗ xj =
( ⊕
aij⊗xj≤λ⊗bi(x)

axij ⊗ xj
)
⊕
( ⊕
aij⊗xj>λ⊗bi(x)

axij ⊗ xj
)

(12)

=
( ⊕
aij⊗xj≤λ⊗bi(x)

aij ⊗ xj
)
⊕
( ⊕
aij⊗xj>λ⊗bi(x)

λ⊗ bi(x)⊗ xj
)

(13)

=
⊕

aij⊗xj≤λ⊗bi(x)

aij ⊗ xj =
⊕
j∈N

aij ⊗ xj = ai(x) = λ⊗ ai(x) (14)

since {j ∈ N ; aij⊗xj > λ⊗bi(x)} = ∅ (max ∅ = O) and the assumption ai(x) ≤ λ⊗bi(x)
implies ai(x) ≤ λ.

We also get

λ⊗ bxi (x) = λ⊗
⊕
j∈N

bxij ⊗ xj (15)

= λ⊗
( ⊕
λ⊗bij⊗xj≤ai(x)

bxij ⊗ xj
)
⊕ λ⊗

( ⊕
λ⊗bij⊗xj>ai(x)

bxij ⊗ xj
)

(16)

=
( ⊕
λ⊗bij⊗xj≤ai(x)

λ⊗ bij ⊗ xj
)
⊕
(
λ⊗

⊕
λ⊗bij⊗xj>ai(x)

ai(x)⊗ xj
)

(17)

= λ⊗ ai(x), (18)

because if {j ∈ N ; λ⊗ bij ⊗ xj > ai(x)} = ∅, then {j ∈ N ; λ⊗ bij ⊗ xj ≤ ai(x)} = N ,⊕
λ⊗bij⊗xj≤ai(x)

λ⊗ bij ⊗ xj = λ⊗ bi(x) ≤ ai(x)

and together with the assumption ai(x) ≤ λ⊗ bi(x) we get λ⊗ bi(x) = ai(x) = λ⊗ai(x)

else {j ∈ N ; λ⊗ bij ⊗ xj > ai(x)} 6= ∅, so⊕
λ⊗bij⊗xj≤ai(x)

λ⊗ bij ⊗ xj ≤ ai(x) and (λ⊗
⊕

λ⊗bij⊗xj>ai(x)

ai(x)⊗ xj) = λ⊗ ai(x),

(summing over the set {j ∈ N ; λ⊗ bij ⊗ xj > ai(x)} implies xj > ai(x)).
As a consequence we obtain axi (x) = λ⊗ bxi (x).

Second, suppose ai(x) ≥ λ⊗ bi(x). Then

axi (x) =
⊕
j∈N

axij ⊗ xj =
( ⊕
aij⊗xj≤λ⊗bi(x)

axij ⊗ xj
)
⊕
( ⊕
aij⊗xj>λ⊗bi(x)

axij ⊗ xj
)

(19)
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=
( ⊕
aij⊗xj≤λ⊗bi(x)

aij ⊗ xj
)
⊕
( ⊕
aij⊗xj>λ⊗bi(x)

λ⊗ bi(x)⊗ xj
)

= λ⊗ bi(x), (20)

because if {j ∈ N ; aij ⊗ xj > λ⊗ bi(x)} = ∅, then {j ∈ N ; aij ⊗ xj ≤ λ⊗ bi(x)} = N ,⊕
aij⊗xj≤λ⊗bi(x)

aij ⊗ xj =
⊕
j∈N

aij ⊗ xj = ai(x) ≤ λ⊗ bi(x)

and together with the assumption ai(x) ≥ λ⊗ bi(x) we get ai(x) = λ⊗ bi(x)

else {j ∈ N ; aij ⊗ xj > λ⊗ bi(x)} 6= ∅, so⊕
aij⊗xj≤λ⊗bi(x)

aij ⊗ xj ≤ λ⊗ bi(x) and
⊕

aij⊗xj>λ⊗bi(x)

λ⊗ bi(x)⊗ xj = λ⊗ bi(x)

(summing over the set {j ∈ N ; aij ⊗ xj > λ⊗ bi(x)} implies xj > λ⊗ bi(x)).
As a consequence we obtain axi (x) = λ⊗ bxi (x).

On the other hand, we get

λ⊗ bxi (x) = λ⊗
⊕
j∈N

bxij ⊗ xj (21)

= λ⊗
( ⊕
λ⊗bij⊗xj≤ai(x)

bxij ⊗ xj
)
⊕ λ⊗

( ⊕
λ⊗bij⊗xj>ai(x)

bxij ⊗ xj
)

(22)

= λ⊗
( ⊕
λ⊗bij⊗xj≤ai(x)

bij ⊗ xj
)
⊕ λ⊗

( ⊕
λ⊗bij⊗xj>ai(x)

ai(x)⊗ xj
)

(23)

= λ⊗
( ⊕
λ⊗bij⊗xj≤ai(x)

bij ⊗ xj
)

= λ⊗
⊕
j∈N

bij ⊗ xj = λ⊗ bi(x), (24)

since {j ∈ N ; λ⊗ bij ⊗ xj > ai(x)} = ∅. Thus, we have axi (x) = λ⊗ bxi (x). �

Lemma 4.2. For A = [A,A], B = [B,B], x ∈ I(n) and λ ∈ I, the following implica-
tions hold

(i) Ax ≤ A, Bx ≤ B,

(ii) if A ∈ A, B ∈ B and A⊗ x = λ⊗B ⊗ x, then A ≤ Ax and B ≤ Bx,

(iii) A ≤ Ax if and only if A⊗ x ≤ λ⊗B ⊗ x,

(iv) B ≤ Bx if and only if λ⊗B ⊗ x ≤ A⊗ x.

P r o o f . (i) Trivially follows from the definitions of Ax and Bx.
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(ii) Let i, j ∈ N and A ⊗ x = λ ⊗ B ⊗ x. If aij ⊗ xj ≤ λ ⊗ bi(x), then we have
axij = aij ≥ aij . If the opposite inequality holds, i. e. aij ⊗ xj > λ⊗ bi(x), then

axij = λ⊗ bi(x) ≥ λ⊗ bi(x) =
⊕
k∈N

aik ⊗ xk ≥ aij ⊗ xj = aij

because aij ⊗ xj > λ⊗ bi(x)⇒ xj > λ⊗ bi(x) = axij .

If λ⊗bij⊗xj ≤ ai(x), then bxij = bij ≥ bij . On the other hand, if λ⊗bij⊗xj > ai(x),
then

bxij = ai(x) ≥ ai(x) = λ⊗ bi(x) = λ⊗
⊕
k∈N

bik ⊗ xk ≥ λ⊗ bij ⊗ xj = bij

because λ⊗ bij ⊗ xj > ai(x)⇒ λ⊗ xj > ai(x) = bxij .

(iii) If A ≤ Ax, then A ⊗ x ≤ Ax ⊗ x = λ ⊗ Bx ⊗ x ≤ λ ⊗ B ⊗ x, according to
Lemma 4.1 and (i).

To prove the reverse implication, suppose that A⊗ x ≤ λ⊗B ⊗ x. Let i ∈M, j ∈ N
be fixed. If aij ⊗ xj ≤ λ ⊗ bi(x), then aij ≤ aij = axij . If aij ⊗ xj > λ ⊗ bi(x),

then axij = λ ⊗ bi(x) and xj ≥ aij ⊗ xj > λ ⊗ bi(x). By assumption, we also have

aij ⊗ xj ≤ λ⊗ bi(x), which is only possible if aij ≤ λ⊗ bi(x) = axij . Hence, A ≤ Ax.

(iv) If B ≤ Bx then, according to Lemma 4.1 and (i), we obtain λ ⊗ B ⊗ x ≤
λ ⊗ Bx ⊗ x = Ax ⊗ x ≤ A ⊗ x. To prove the converse implication, suppose that
λ ⊗ B ⊗ x ≤ A ⊗ x and that i ∈ M, j ∈ N are fixed. If λ ⊗ bij ⊗ xj ≤ ai(x), then
bij ≤ bij = bxij . If λ ⊗ bij ⊗ xj > ai(x), then bxij = ai(x) and λ ⊗ xj > ai(x). By
assumption, we also have λ⊗ bij ⊗xj ≤ ai(x), which is only possible if bij ≤ ai(x) = bxij .
Hence, B ≤ Bx. �

Theorem 4.3. Suppose given A = [A,A], B = [B,B] and X = [x, x]. An interval
vector X is a tolerable generalized eigenvector of (A, B) if and only if there exist λ ∈ I
and A ∈ A such that

λ⊗B ⊗ x ≤ A⊗ x ≤ λ⊗B ⊗ x (25)

is fulfilled for any x ∈X.

P r o o f . Suppose that there exist λ ∈ I and A ∈ A such that (25) holds for any x ∈X.

Put Â = [Â, Â] = [A,A]. Observe that the following equivalence easily holds:

(∃λ ∈ B)(∃A ∈ A)(∀x ∈X)(∃B ∈ B) λ⊗B ⊗ x ≤ A⊗ x ≤ λ⊗B ⊗ x⇔

⇔ (∃λ ∈ B)(∃Â ∈ Â)(∀x ∈X)(∃B ∈ B) λ⊗B ⊗ x ≤ Â⊗ x ≤ λ⊗B ⊗ x.

From λ⊗B ⊗ x ≤ Â⊗ x ≤ λ⊗B ⊗ x and by Lemma 4.2(iii),(iv) we get:

λ⊗B ⊗ x ≤ Â⊗ x = Â⊗ x⇒ B ≤ Bx,
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Â⊗ x ≤ Â⊗ x ≤ λ⊗B ⊗ x⇒ Â ≤ Âx(= A).

By Lemma 4.1 for each x ∈X the equality A⊗x = λ⊗Bx⊗x is satisfied, thus we have
proved that

(∃λ ∈ B)(∃A ∈ A)(∀x ∈X)(∃B = Bx ∈ B) A⊗ x = λ⊗Bx ⊗ x.

For the converse implication, suppose that X is a tolerable generalized eigenvector of
(A, B), i. e.,

(∃λ ∈ B)(∃A ∈ A)(∀x ∈X)(∃B ∈ B) A⊗ x = λ⊗B ⊗ x

which straightforwardly implies

(∃λ ∈ B)(∃A ∈ A)(∀x ∈X)(∃B ∈ B) λ⊗B ⊗ x ≤ λ⊗B ⊗ x = A⊗ x ≤ λ⊗B ⊗ x.

�

Theorem 4.4. Suppose given A = [A,A], B = [B,B] and X = [x, x]. Then X is a
tolerable generalized eigenvector of (A, B) if and only if there are λ ∈ I and A ∈ A
such that for each i ∈ N the system of inequalities

λ⊗B ⊗ x(i) ≤ A⊗ x(i) ≤ λ⊗B ⊗ x(i) (26)

is satisfied.

P r o o f . Suppose that (26) holds and x is an arbitrary vector of X. By Lemma 2.4,
x can be written as a max-min linear combination of x(i), i. e. x =

⊕
i∈N

βi ⊗ x(i), where

each βi ∈ I and xi ≤ βi ≤ xi. Then we have

λ⊗B ⊗ x = λ⊗B ⊗
⊕
i∈N

βi ⊗ x(i) =
⊕
i∈N

βi ⊗ λ⊗B ⊗ x(i) (27)

≤
⊕
i∈N

βi ⊗A⊗ x(i) = A⊗
⊕
i∈N

βi ⊗ x(i) = A⊗ x. (28)

Similarly, we can prove A⊗ x ≤ λ⊗B ⊗ x.
The converse assertion follows trivially. �

Note that Theorem 4.4 transforms the task of recognizing whether a given interval
vector is tolerable generalized eigenvector to the solvability problem of (26). Further
reduction can be done using the following basic result from [21].

Suppose given A ∈ I(m,n) and b ∈ I(m). Consider the system of inequalities of the
form

A⊗ x ≤ b. (29)

Define a principal solution x̂(A, b) of (29) as follows:

x̂j(A, b) = min
i∈M
{bi : aij > bi}, (30)

where min ∅ = I.
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Lemma 4.5. (Zimmermann [21]) Suppose given A ∈ I(m,n) and b ∈ I(m). Then the
following assertions hold:

(i) if A⊗ x ≤ b for some x ∈ I(n), then x ≤ x̂(A, b);

(ii) A⊗ x̂(A, b) ≤ b.

Theorem 4.6. Suppose given C,D ∈ I(m,n) and e, f ∈ I(m). Then the system of
inequalities

C ⊗ x ≤ e, (31)

D ⊗ x ≥ f (32)

is solvable if and only if
D ⊗ x̂(C, e) ≥ f. (33)

P r o o f . (⇐) According to Lemma 4.5 (ii), x̂(C, e) satisfies (31). If (33) is fulfilled,
then x̂(C, e) satisfies (32). Hence, the system (31), (32) is solvable.

(⇒) Suppose that the system (31), (32) has a solution y. Since y ≤ x̂(C, e), according
to Lemma 4.5 (i) and according to the monotonicity of ⊗ we obtain

D ⊗ x̂(C, e) ≥ D ⊗ y ≥ f,

therefore (33) is fulfilled. �

Observe that checking the solvability of the system (31), (32) needs O(mn) arithmetic
operations.

We can check the conditions of Theorem 4.4 in practice using the last theorem. The
inequalities can be joined into two systems according to Theorem 4.6 as follows:

(∀k ∈ N)
⊕

i∈M,j∈N
αij ⊗A(ij) ⊗ x(k) ≤ λ⊗B ⊗ x(k),

αij ≤ aij
,

(∀k ∈ N)
⊕

i∈M,j∈N
αij ⊗A(ij) ⊗ x(k) ≥ λ⊗B ⊗ x(k),

αij ≥ aij .
and αij ∈ I.

Suppose given A, B ⊆ I(m,n) and X ⊆ I(n). Define the block matrix C ∈
I(2mn,mn), vectors e, f ∈ I(2mn) and α ∈ I(mn) as follows:

C =



A(11) ⊗ x(1) . . . A(1n) ⊗ x(1) A(21) ⊗ x(1) . . . A(mn) ⊗ x(1)
A(11) ⊗ x(2) . . . A(1n) ⊗ x(2) A(21) ⊗ x(2) . . . A(mn) ⊗ x(2)

...
A(11) ⊗ x(n) . . . A(1n) ⊗ x(n) A(21) ⊗ x(n) . . . A(mn) ⊗ x(n)

I O O O . . . O
O I O O . . . O
...
O O O O . . . I


,



772 M. GAVALEC, H. MYŠKOVÁ, J. PLAVKA AND D. PONCE

e =



λ⊗B ⊗ x(1)
λ⊗B ⊗ x(2)

...
λ⊗B ⊗ x(n)

a11
...
a1n

...
a21
...

amn



, f =



λ⊗B ⊗ x(1)
λ⊗B ⊗ x(2)

...
λ⊗B ⊗ x(n)

a11
...
a1n

...
a21
...

amn


and α = (α11, . . . , α1n, α21, . . . , α2n, . . . , αm1, . . . , αmn)T .

Theorem 4.7. Suppose given A, B, X and λ. Then X is a tolerable generalized eigen-
vector of (A, B) if and only if the system of inequalities C⊗α ≤ e, C⊗α ≥ f is solvable.

P r o o f . Using Theorem 4.4 and Theorem 4.6 the assertion follows. �

Theorem 4.8. Suppose given A, B ⊆ I(m,n), X ⊆ I(n) and λ ∈ I. There is an
O(m2n3) procedure for checking whether X is a tolerable generalized eigenvector of
(A,B).

P r o o f . Checking whether X is a tolerable generalized eigenvector of (A,B) is equiv-
alent to determining the solvability of (26) for some λ ∈ I. Computing the products
A(ij)⊗x(k), B⊗x(k), B⊗x(k) needs O(mn) elementary operations for each i ∈M and
for each j, k ∈ N . The solvability of the system C⊗α ≤ e, C⊗α ≥ f can be determined
in O(2mn ·mn) time according to (30) and (33). Thus, determining the solvability of
(26) needs mn2O(mn) +O(2mn ·mn) = O(m2n3) time for a given λ ∈ I. �

Note that to check (26) for all λ ∈ I for |I| = ` needs ` ·O(m2n3) time.

5. WEAKLY TOLERABLE GENERALIZED EIGENVECTORS

We will now present the main properties of weakly tolerable generalized eigenvectors
and a polynomially recognizable characterization for them.

Theorem 5.1. Suppose given A = [A,A], B = [B,B] and X = [x, x]. Then X is a
weakly tolerable generalized eigenvector of (A, B) if and only if

(∃λ ∈ I)(∀x ∈X)
[
A⊗ x ≤ λ⊗B ⊗ x ∧ λ⊗B ⊗ x ≤ A⊗ x

]
. (34)
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P r o o f . Suppose that (34) holds. From inequalities A⊗x ≤ λ⊗B⊗x, λ⊗B⊗x ≤ A⊗x
by Lemma 4.2 (iii), (iv) we get A ≤ Ax, B ≤ Bx and the assertion follows from
Lemma 4.1.

The converse assertion follows trivially. �

Theorem 5.2. Suppose given A, B and X. A vector X is a weakly tolerable gener-
alized eigenvector of (A, B) if and only if there is λ ∈ I such that for each i ∈ M the
system of inequalities

A⊗ x(i) ≤ λ⊗B ⊗ x(i)

λ⊗B ⊗ x(i) ≤ A⊗ x(i) (35)

is satisfied.

P r o o f . We will prove that (34) is equivalent to (35). Let x ∈X be arbitrary.
(35)⇒(34). By Lemma 2.4 we have x =

⊕
i∈N

βi ⊗ x(i), where each βi ∈ I and

xi ≤ βi ≤ xi. Then

A⊗ x = A⊗
⊕
i∈N

βi ⊗ x(i) =
⊕
i∈N

βi ⊗A⊗ x(i) ≤

⊕
i∈N

βi ⊗ λ⊗B ⊗ x(i) = λ⊗B ⊗
⊕
i∈N

βi ⊗ x(i) = λ⊗B ⊗ x.

Similarly we can prove that λ⊗B ⊗ x ≤ A⊗ x.
(34)⇒(35). The implication trivially follows. �

Theorem 5.3. There is an O(m2n3) procedure which checks whether X is a weakly
tolerable generalized eigenvector of (A,B).

P r o o f . The computation of (35) needs to compute A⊗x(i), B⊗x(i), B⊗x(i), A⊗x(i)
for all i ∈ N in O(mn) time each. Thus, the verification of (35) requires O(mn2) time
for a given λ ∈ I. In a process of the calculation of A⊗x(i), B⊗x(i), B⊗x(i), A⊗x(i)
for any i ∈ M , the elements are in Λ = {aij , aij , bij , bij , xi, xi; i ∈ M, j ∈ N} and for
this reason it suffices to consider λ ∈ Λ for determining the solvability of (35). Hence it
follows that the solvability of (35) can be recognized in mn ·O(mn2) = O(m2n3) time.

�

Example 5.4. Put I = [0, 10], λ = 10 and

A =


0 2 2
1 0 2
2 1 3
1 2 1

 , A =


1 3 4
3 4 5
4 5 6
3 6 2

 ,

B =


0 1 1
0 0 2
2 1 1
1 0 0

 , B =


1 2 2
5 4 5
4 3 4
3 4 2

 ,
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x =

 2
2
1

 , x =

 4
5
4

 .

We have

x(1) =

 4
2
1

 , x(2) =

 2
5
1

 , x(3) =

 2
2
4



A⊗ x(1) =


2
1
2
2

 , A⊗ x(2) =


2
1
2
2

 , A⊗ x(3) =


2
2
3
2

 ,

B ⊗ x(1) =


2
4
4
3

 , B ⊗ x(2) =


2
4
3
4

 , B ⊗ x(3) =


2
4
4
2

 ,

B ⊗ x(1) =


1
1
2
1

 , B ⊗ x(2) =


1
1
2
1

 , B ⊗ x(3) =


1
2
2
1

 ,

A⊗ x(1) =


2
3
4
3

 , A⊗ x(2) =


3
4
5
5

 , A⊗ x(3) =


4
4
4
2

 .

Since A⊗ x(i) ≤ λ⊗B ⊗ x(i), λ⊗B ⊗ x(i) ≤ A⊗ x(i) for each i ∈ N , by Theorem 5.2,
the given interval vector X is a weakly tolerable generalized eigenvector of (A, B).

In what follows we will show that X is a tolerable generalized eigenvector of (A, B).
We have to solve the system of inequalities
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2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 3 2 1 1 1 1 1 1 1
2 2 2 2 2 2 4 2 2 2 2 2
2 2 2 2 2 2 2 2 2 3 2 2
2 3 2 2 2 2 2 2 2 2 2 2
1 1 1 2 4 1 1 1 1 1 1 1
2 2 2 2 2 2 2 5 2 2 2 2
2 2 2 2 2 2 2 2 2 2 5 2
2 2 4 2 2 2 2 2 2 2 2 2
2 2 2 2 2 4 2 2 2 2 2 2
3 3 3 3 3 3 3 3 4 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2
10 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 10 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 0 0 10



⊗



α11

α12

α13

α21

α22

α23

α31

α32

α33

α41

α42

α43



≤



2
4
4
3
2
4
3
4
2
4
4
2
1
3
4
3
4
5
4
5
6
3
6
2


(36)

and

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 3 2 1 1 1 1 1 1 1
2 2 2 2 2 2 4 2 2 2 2 2
2 2 2 2 2 2 2 2 2 3 2 2
2 3 2 2 2 2 2 2 2 2 2 2
1 1 1 2 4 1 1 1 1 1 1 1
2 2 2 2 2 2 2 5 2 2 2 2
2 2 2 2 2 2 2 2 2 2 5 2
2 2 4 2 2 2 2 2 2 2 2 2
2 2 2 2 2 4 2 2 2 2 2 2
3 3 3 3 3 3 3 3 4 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2
10 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 10 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 0 0 10



⊗



α11

α12

α13

α21

α22

α23

α31

α32

α33

α41

α42

α43



≥



1
1
2
1
1
1
2
1
1
2
2
1
0
2
2
1
0
2
2
1
3
1
2
1


(37)
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To obtain a solution of the system (36), (37) we will use the Theorem 4.6: x̂(C, e) =
(1, 2, 2, 3, 4, 5, 4, 3, 6, 3, 4, 2)T and

C ⊗ x̂(C, e) = (2, 3, 4, 3, 2, 4, 3, 4, 2, 4, 4, 2, 1, 2, 2, 3, 4, 5, 4, 3, 6, 3, 4, 2)T

≥ f = (1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 3, 1, 2, 1)T .

The vector x̂(C, e) is the greatest solution of the above system of inequalities and cor-
responds to the following matrix:

A = 1⊗A(11) ⊕ 2⊗A(12) ⊕ 2⊗A(13) ⊕ 3⊗A(21) ⊕ 4⊗A(22) ⊕ 5⊗A(23)⊕

4⊗A(31) ⊕ 3⊗A(32) ⊕ 6⊗A(33) ⊕ 3⊗A(41) ⊕ 4⊗A(42) ⊕ 2⊗A(43) =
1 1 1
1 0 1
1 1 1
1 1 1

⊕


0 2 2
1 0 2
2 1 2
1 2 1

⊕


0 2 2
3 0 2
2 1 3
1 2 1

⊕


0 2 2
1 3 2
2 1 3
1 2 1

⊕


0 2 2
1 0 4
2 1 3
2 1 2

⊕


0 2 2
1 0 2
4 1 3
1 2 1

⊕


0 2 2
1 0 2
2 3 3
1 2 1

⊕


0 2 2
1 0 2
2 1 3
1 2 1

⊕


0 2 2
1 0 2
2 1 6
1 2 1

⊕


0 2 2
1 0 2
2 1 3
3 2 1

⊕


0 2 2
1 0 2
2 1 3
1 4 1

⊕


0 2 2
1 0 2
2 1 2
1 2 2

 =


1 2 2
3 3 4
4 3 6
3 4 2

 .

Hence X is tolerable generalized eigenvector of (A, B).

6. CONCLUSIONS

In this paper, three different concepts of an interval generalized eigenvector have been
studied. The results obtained are useful in many practical applications. Replacing
the exact values of the elements of a matrix and a vector with intervals opens the
possibility of defining several types of generalized eigenvectors according to the choice of
quantifiers and their order. Three notions of an interval generalized eigenvector of a given
interval matrix have been treated, namely: strongly tolerable generalized eigenvectors,
tolerable generalized eigenvectors and weakly tolerable generalized eigenvectors. Results
based on the properties of these types of generalized eigenvectors have allowed us to
formulate efficient necessary and sufficient conditions. In addition, algorithms have
been found that recognize these types of generalized eigenvectors. The results have
been illustrated by numerical examples (in the cases of tolerable and weakly tolerable
generalized eigenvectors).
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