Kybernetika 58 no. 4, 626-636, 2022

Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers

Patrick FlorchingerDOI: 10.14736/kyb-2022-4-0626


The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises whereas in the previous works at least one of the state variable should be unnoisy in order to design an observer.


stochastic stability, composite stochastic system, feedback law, stochastic observer


60H10, 93C10, 93D05, 93E15


  1. C. I.Byrnes and A. Isidori: New results and examples in nonlinear feedback stabilization. Systems Control Lett. 12 (1989), 437-442.   DOI:10.1016/0167-6911(89)90080-7
  2. R. Chabour and P. Florchinger: Exponential mean square stability of partially linear stochastic systems. Appl. Math. Lett. 6 (1993), 6, 91-95.   DOI:10.1016/0893-9659(93)90085-2
  3. A. Dani, S. J. Chung and S. Hutchison: Observer design for stochastic nonlinear systems via contraction-based incremental stability. IEEE Trans. Automat. Control 60 (2014), 3, 700-714.   DOI:10.1109/TAC.2014.2357671
  4. D. Ding, Q. L. Han, Z. Wang and X. Ge: Recursive filtering of distributed cyber-physical systems with attack detection. IEEE Trans. Systems Man Cybernet.: Systems 51 (2021), 10, 6466-6476.   DOI:10.1109/TSMC.2019.2960541
  5. D. Ding, Z. Wang and Q. L. Han: Neural-network-based consensus control for multiagent systems with input constraints: The event-triggered case. IEEE Trans. Cybernet. 50 (2020), 8, 3719-3730.   DOI:10.1109/TCYB.2019.2927471
  6. A. Ferfera and M. A. Hammami: Stabilization of composite nonlinear systems by a estimated state feedback law. In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 697-701.   CrossRef
  7. P. Florchinger: Stabilization of partially linear stochastic systems via estimated state feedback law. In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 753-758.   CrossRef
  8. P. Florchinger: Global stabilization of composite stochastic systems. Int. J. Comput. Math. Appl. 33 (1997), 6, 127-135.   DOI:10.1016/s0898-1221(97)00038-2
  9. P. Florchinger: Global stabilization of nonlinear composite stochastic systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 5036-5037.   CrossRef
  10. M. Ghanes, J. De Leon and J. Barbot: Observer design for nonlinear systems under unknown time-varying delays. IEEE Trans. Automat. Control 58 (2013), 1529-1534.   DOI:10.1109/TAC.2012.2225554
  11. J. P. Gauthier and I. Kupka: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge 2001.   CrossRef
  12. X. Hu: On state observers for nonlinear systems. Systems Control Lett. 17 (1991), 465-473.   DOI:10.1016/0167-6911(91)90086-T
  13. R. Z. Khasminskii: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn 1980.   DOI:
  14. P. V. Kokotovic and H. J. Sussmann: A positive real condition for global stabilization of nonlinear systems. Systems Control Lett. 13 (1989), 125-133.   DOI:10.1016/0167-6911(89)90029-7
  15. S. R. Kou, D. L. Elliott and T. G. Tarn: Exponential observers for nonlinear dynamic systems. Inform. Control 29 (1975), 204-216.   DOI:10.1016/S0019-9958(75)90382-4
  16. D. G. Luenberger: Observing the state of a linear system. IEEE Trans. Military Electron. 8 (1964), 74-80.   DOI:10.1109/TME.1964.4323124
  17. D. G. Luenberger: An introduction to observers. IEEE Trans. Automat. Control 16 (1971), 596-602.   DOI:10.1109/TAC.1971.1099826
  18. Z. Lin and A. Saberi: Semi-global stabilization of partially linear composite systems via linear dynamic state feedback. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 2538-2543.   CrossRef
  19. A. Saberi, P. V. Kokotovic and H. J. Sussmann: Global stabilization of partially linear composite systems. SIAM J. Control Optim. 28 (1990), 6, 1491-1503.   DOI:10.1137/0328079
  20. E. D. Sontag: Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989), 435-443.   DOI:10.1109/9.28018
  21. T. J. Tarn and Y. Rasis: Observers for nonlinear stochastic systems. IEEE Trans. Automat. Control 21 (1976), 4, 441-448.   DOI:10.1109/TAC.1976.1101300
  22. J.Tsinias: Sufficient Lyapunov-like conditions for stabilization. Math. Control Signals Systems 2 (1989), 343-357.   DOI:10.1007/BF02551276
  23. J. Tsinias: Theorem on global stabilization of nonlinear systems by linear feedback. Systems Control Letters 17 (1991), 357-362.   DOI:10.1016/0167-6911(91)90135-2
  24. W. M. Wonham: On a matrix Riccati equation of stochastic control. SIAM J. Control Optim. 6 (1968), 4, 681-697.   DOI:10.1137/0306044
  25. J. Wu, H. Karimi and P. Shi: Observer-based stabilization of stochastic systems with limited communication. Math. Problems Engrg. 2012 (2012), Article ID 781542, 17 pp.   CrossRef
  26. X. M. Zhang, Q. L. Han, X. Ge and B. L. Zhang: Delay-variation-dependent criteria on extended dissipativity for discrete-time neural networks with time-varying delay. IEEE Trans. Neural Networks Learning Systems (2021), 1-10.   DOI:10.1109/tnnls.2021.3105591
  27. X. M. Zhang, Q. L. Han and J. Wang: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5319-5329.   DOI:10.1109/TNNLS.2018.2797279
  28. L. Zhou, X. Xiao and G. Lu: Observers for a Class of Nonlinear Systems with Time-Delay. Asian J. Control 11 (2009), 688-693.   DOI:10.1002/asjc.150