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STABILIZATION OF PARTIALLY LINEAR COMPOSITE
STOCHASTIC SYSTEMS VIA STOCHASTIC LUENBERGER
OBSERVERS

Patrick Florchinger

The present paper addresses the problem of the stabilization (in the sense of exponential sta-
bility in mean square) of partially linear composite stochastic systems by means of a stochastic
observer. We propose sufficient conditions for the existence of a linear feedback law depending
on an estimation given by a stochastic Luenberger observer which stabilizes the system at its
equilibrium state. The novelty in our approach is that all the state variables but the output can
be corrupted by noises whereas in the previous works at least one of the state variable should
be unnoisy in order to design an observer.

Keywords: stochastic stability, composite stochastic system, feedback law, stochastic ob-
server
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1. INTRODUCTION

The purpose of this paper is to investigate the output stabilization (in the sense of expo-
nential stability in mean square) by linear feedback laws given by stochastic Luenberger
observers for partially linear composite stochastic systems.

The feedback stabilization of partially linear composite deterministic systems has
been studied in the past decades by different authors (see [1, 14, 20, 22] or [18] for
example). The stabilization by means of linear state feedback laws of deterministic
systems in the form

ẋ = f(x) +G(x, ξ)ξ,

ξ̇ = Aξ +Bu,

where x ∈ IRn, ξ ∈ IRp, and u ∈ IRq has been handled by Saberi, Kokotovic and
Sussmann in [19]. In the latter article, the authors prove, under suitable conditions on
the system coefficients, that if the zero dynamics of the nonlinear system

ẋ = f(x)
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is globally exponentially stable, then for every matrix K such that the matrix A +
BK is Hurwitz, the linear feedback law u = Kξ renders the original system globally
exponentially stable.

The stabilization of composite stochastic systems has been investigated under differ-
ent sets of hypothesis in [2, 8, 9]. In [8], sufficient conditions for the stabilization (in
the sense of exponential stability in mean square) by means of linear feedback laws of
partially linear composite stochastic systems in the form

dxt = (f(xt) +G(xt, ξt)ξt)dt+ g(xt)dwt,

dξt = (Aξt +Bu)dt+ Cξtdvt,

where xt ∈ IRn, ξt ∈ IRp and u ∈ IRq are given. In fact, it is proved, under suit-
able conditions, that if the equilibrium solution of the nonlinear stochastic differential
equation

dxt = f(xt)dt+ g(xt)dwt

is exponentially stable in mean square, then for every matrix K such that the matrices
A + BK and C satisfy a stochastic algebraic Lyapunov inequality, the linear feedback
law u = Kξ renders the original system exponentially stable in mean square. The main
tool used in this analysis is the stochastic Lyapunov theory developed by Khasminskii
in [13].

The concept of observers for deterministic linear systems is due to Luenberger [16, 17].
Despite the fact that the design of observers for deterministic nonlinear systems remains
a difficult task to achieve, different authors have proposed observers for some specific
classes of nonlinear systems (see [12, 15] or [11] for example). The stabilization of
deterministic systems via an observer design has been investigated in the linear case
by Luenberger [17] and for some specific cases of nonlinear systems in [23] or [6] for
example.

The stabilization of stochastic systems via an observer design has been studied by
Tarn and Rasis [21], Wu, Karimi and Shi [25] and Dai, Chung and Hutchison [3]. In
[21], the authors propose a Lyapunov based method to design exponentially bounded
observers for nonlinear stochastic systems driven by noise with bounded covariance.
The stabilization (in the sense of exponential boundedness in mean square) of unstable
stochastic systems using an observer feedback is completed. In [3], a new design approach
for observers with guaranted stability via a stochastic contraction lemma is given.

The aim of this paper is to achieve the stabilization of the above composite stochas-
tic differential system by making use of a linear feedback law given by a stochastic
Luenberger observer when an output

yt = Hξt

is available. Note that when C ≡ 0, a preliminary result in that direction has already
been obtained in [7]. The novelty in this work is that the stabilizing feedback law
is obtained by means of a stochastic Luenberger observer design whereas in [7] the
stabilizing feedback law is given by the usual (deterministic) Luenberger observer. Note



628 P. FLORCHINGER

that since in our framework we have a ”perfect observation” (i. e. an unnoisy output) the
usual techniques of nonlinear filtering do not apply and as a consequence the stochastic
observer design introduced in this work gives an easy way to obtain an estimate of the
signal process in the mean–square sense.

This paper is divided in four sections and is organized as follows. In section two, we
give a brief survey of the results proved by Khasminskii [13] on the exponential stability
in mean square of the equilibrium solution of a stochastic differential equation. In
section three, we introduce the class of input–output partially linear composite stochastic
systems we are dealing with in this paper. In section four, we design a stochastic
Luenberger observer for the linear part of the system we are dealing with and we prove
that this observer renders the linear subsystem exponentially stable in mean square. In
section five, we state and prove a stabilization result for the overall system by using the
observer design proposed in section three.

2. STOCHASTIC STABILITY

The purpose of this section is to summarize the main results on the exponential stability
in mean square for the equilibrium solution of a stochastic differential equation that we
need in the sequel. For a complete presentation of the Lyapunov theory of stochastic
stability, we refer the reader to the book of Khasminskii [13] for example.

On a complete probability space (Ω,F , P ), let (wt)t≥0 be a standard IRm–valued
Wiener process defined on this space and consider the stochastic process xt ∈ IRn solu-
tion of the stochastic differential equation written in the sense of Itô,

xt = x0 +

∫ t

0

b(xs) ds+

m∑
k=1

∫ t

0

σk(xs) dwks (1)

where the coefficients b and σk, 1 ≤ k ≤ m, are Lipschitz functionals mapping IRn into
IRn, vanishing at the origin, and with less than linear growth.

If, for any s ≥ 0 and x ∈ IRn, xs,xt , s ≤ t, denotes the solution at time t of the
stochastic differential equation (1) starting form the state x at time s, the notion of
exponential stability in mean square is defined as follows.

Definition 2.1. The equilibrium solution xt ≡ 0 of the stochastic differential equation
(1) is said to be exponentially stable in mean square if there exist positive constants c1
and c2 such that

E|xs,xt |2 ≤ c1|x|2e−c2(t−s),

for any 0 ≤ s ≤ t.

Remark 2.2. If σk ≡ 0, 1 ≤ k ≤ m, the previous definition reduces to that of global
exponential stability for deterministic systems.

Furthermore, denoting by L the infinitesimal generator of the stochastic process so-
lution of the stochastic differential equation (1); that is, the second order differential
operator defined for any function ψ in C2(IRn, IR) by
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Lψ(x) =

n∑
i=1

bi(x)
∂ψ

∂xi
(x) +

1

2

n∑
i,j=1

ai,j(x)
∂2ψ

∂xi∂xj
(x)

where ai,j(x) =
∑m
k=1 σ

i
k(x)σjk(x), 1 ≤ i, j ≤ n, one can prove the following Lyapunov

theorem.

Theorem 2.3. Assume that there exist a Lyapunov function V defined on IRn (i. e. a
proper function V in C2(IRn, IR) which is positive definite) and three positive constants
α1, α2 and α3 such that

α1|x|2 ≤ V (x) ≤ α2|x|2,
and

LV (x) ≤ −α3|x|2,
for any x ∈ IRn. Then, the equilibrium solution xt ≡ 0 of the stochastic differential
equation (1) is exponentially stable in mean square.

In addition, the following converse Lyapunov theorem gives necessary conditions for
the existence of a Lyapunov function when the equilibrium solution of the stochastic
differential equation (1) is exponentially stable in mean square.

Theorem 2.4. If the equilibrium solution xt ≡ 0 of the stochastic differential equation
(1) is exponentially stable in mean square and the coefficients b and σk, 1 ≤ k ≤ m, have
continuous bounded derivatives up to order two, then there exist a Lyapunov function
V defined on IRn and five positive constants αi, 1 ≤ i ≤ 5, such that

α1|x|2 ≤ V (x) ≤ α2|x|2,

LV (x) ≤ −α3|x|2,
and

|∇V (x)| ≤ α4|x| and |∇2V (x)| ≤ α5,

for any x ∈ IRn where ∇V (x) =
(
∂V
∂x1

(x), ..., ∂V∂xn
(x)
)τ

.

3. PROBLEM STATEMENT

The aim of this section is to introduce the class of partially linear composite stochastic
systems we are dealing with in this paper. On a complete probability space (Ω,F , P ),
denote by (xt, ξt, yt) ∈ IRn×IRp×IRq the stochastic process solution of the input–output
stochastic differential system written in the sense of Itô,

xt = x0 +

∫ t

0

(f(xs) +G(xs, ξs)ξs) ds+

∫ t

0

g(xs) dws (2)

ξt = ξ0 +

∫ t

0

(Aξs +Bu) ds+

∫ t

0

Cξs dvs (3)

yt = Hξt (4)
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where

1. x0 and ξ0 are given in IRn and IRp, respectively,

2. (wt)t≥0 and (vt)t≥0 are independent standard Wiener processes defined on the
probability space (Ω,F , P ) with values in IRm and IR, respectively,

3. f and g are functions in C2
b (IRn, IRn) and C2

b (IRn, IRn×m), respectively, such that
f(0) = 0 and g(0) = 0,

4. G is a bounded function mapping IRn × IRp into IRn×p,

5. u is an IRr–valued control law,

6. A, B and C are matrices in Mp×p(IR), Mp×r(IR) and Mp×p(IR), respectively,
such that the pair (A,B) is stabilizable,

7. H is a matrix in Mq×p(IR) such that the pair (A,H) is completely observable.

Our aim in this paper is twofold. Firstly, we design a stabilizing stochastic observer for
the input–output linear stochastic differential system (3)–(4); i. e. by using the output
given by (4), we design a stochastic process

(
ξt
)
t≥0 with values in IRp such that the

equilibrium solution of the closed–loop system

ξt = ξ0 +

∫ t

0

(Aξs +BKξs) ds+

∫ t

0

Cξs dvs

et = ξt − ξt

for some matrix K in Mr×p(IR) is exponentially stable in mean square. Secondly, for
such a matrix K in Mr×p(IR), we prove that the feedback law u = Kξt renders the
original stochastic system exponentially stable in mean square.

Remark 3.1. The novelty in this paper lies in the fact that we are dealing with a
stochastic differential system with a ”perfect observation” (i. e. equation (4) defining
the output of the system is unnoisy) for which the usual techniques of stochastic filter-
ing do not apply. As a consequence, to overcome this difficulty, we design in the following
section a stochastic Luenberger observer which gives a straightforward method to com-
pute a good estimate in the mean square sense for the system process given by (3).

4. A STOCHASTIC LUENBERGER OBSERVER

The purpose of this section is to design a stabilizing observer for the input–output linear
stochastic differential system (3) – (4). This new stochastic Luenberger observer design
gives an alternative to filtering when dealing with stochastic systems with a perfect
observation since in this framework the computation of the filter is a difficult task to
reach.
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Denote by
(
ξt
)
t≥0 the stochastic process with values in IRp defined by

ξt = ξ0 +

∫ t

0

(Aξs +Bu) ds+

∫ t

0

L
(
ys −Hξs

)
ds (5)

where ξ0 is given in IRp and L in a matrix in Mp×q(IR).

Remark 4.1. The process
(
ξt
)
t≥0 given by (5) is the Luenberger observer (see [16] for

example) associated with the input–output deterministic linear system,

ξ̇t = Aξt +Bu

yt = Hξt.

Then, setting for every t ≥ 0, et = ξt − ξt, one can deduce from (3)–(4) and (5) with
the feedback law u = Kξt where K is a matrix inMr×p(IR), that the stochastic process
(ξt, et)t≥0 solves the stochastic differential system

dξt = (A+BK)ξtdt+BKetdt+ Cξtdvt (6)

det = (A− LH)etdt− Cξtdvt. (7)

Therefore, if λmax(K,L) denotes the largest eigenvalue of the symmetric matrix∫ +∞

0

exp (tM(K,L)τ )

(
CτC 0

0 0

)
exp (tM(K,L)) dt

where M(K,L) is the block matrix

(
A+BK BK

0 A− LH

)
, one gets the following

result.

Theorem 4.2. Assume that K and L are matrices inMr×p(IR) andMp×q(IR), respec-
tively, such that the matrices A+BK and A−LH are stable (i. e. all their eigenvalues
have negative real parts) and λmax(K,L) < 1

2 , then the equilibrium solution of the
stochastic differential system (6) – (7) is exponentially stable in mean square.

P r o o f . First, note that if the matrices K and L in Mr×p(IR) and Mp×q(IR), respec-
tively, are chosen such that the matrices A+BK and A−LH are stable then the matrix
M(K,L) is also stable and, since λmax(K,L) < 1

2 , the hypothesis of Theorem 4.1 proved
by Wonham in [24] are satisfied.

As a consequence, if Q is a symmetric and positive definite matrix in M2p×2p(IR)
there exists a symmetric and positive definite matrix P in M2p×2p(IR) solution of the
stochastic algebraic Lyapunov equation

M(K,L)τP + PM(K,L) +

(
C 0
−C 0

)τ
P

(
C 0
−C 0

)
= −Q. (8)

Therefore, the function V mapping IR2p into IR defined for any

(
ξ
e

)
∈ IR2p by
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V

(
ξ
e

)
=< P

(
ξ
e

)
,

(
ξ
e

)
>

is a Lyapunov function such that

α1

∣∣∣∣( ξ
e

)∣∣∣∣2 ≤ V ( ξ
e

)
≤ α2

∣∣∣∣( ξ
e

)∣∣∣∣2
where α1 and α2 are respectively the smallest and largest eigenvalue of the symmetric
and positive definite matrix P .

Moreover, if L1 is the infinitesimal generator of the stochastic process solution of the
stochastic differential system (6) – (7), one gets

L1V

(
ξ
e

)
=

〈
(M(K,L)τP + PM(K,L))

(
ξ
e

)
,

(
ξ
e

)〉
+

〈(
C 0
−C 0

)τ
P

(
C 0
−C 0

)(
ξ
e

)
,

(
ξ
e

)〉
which yields

L1V

(
ξ
e

)
= − < Q

(
ξ
e

)
,

(
ξ
e

)
>≤ −α3

∣∣∣∣( ξ
e

)∣∣∣∣2
where α3 is the smallest eigenvalue of the matrix Q and hence, according with the
stochastic Lyapunov theorem (Theorem 2.3) the equilibrium solution of the stochastic
differential system (6) – (7) is exponentially stable in mean square. �

Remark 4.3. Assumption λmax(K,L) < 1
2 is quite restrictive but needed to ensure

the existence of a solution for the stochastic algebraic Lyapunov equation (8) according
with Theorem 4.1 in [24]. Indeed, to our knowledge the are no result in the literature
involving a less restrictive assumption in order to prove the existence of a solution for a
stochastic algebraic Lyapunov equation.

To conclude this section, note that the above analysis remains valid if the stochastic
differential equation (3) is driven by a multidimensional Wiener process.

5. A STABILIZATION RESULT

In this section, we prove that the stochastic Luenberger observer obtained in the previous
section permits to stabilize the original system introduced in section three.

Theorem 5.1. Assume that the equilibrium solution xt ≡ 0 of the nonlinear stochastic
differential equation

xt = x0 +

∫ t

0

f(xs) ds+

∫ t

0

g(xs) dws (9)

is exponentially stable in mean square. Then the control law u defined on IRq by u = Kξt
where

(
ξt
)
t≥0 is the stochastic Luenberger observer given by (5) where K and L are
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matrices in Mr×p(IR) and Mp×q(IR), respectively, such that the matrices A+BK and
A − LH are stable and λmax(K,L) < 1

2 is a stabilizing feedback law for the stochastic
differential system (2) – (3).

P r o o f . Since the equilibrium solution xt ≡ 0 of the stochastic differential equation
(9) is exponentially stable in mean square, one can deduce from the converse stochastic
Lyapunov theorem (Theorem 2.4) that there exist a Lyapunov function V defined on
IRn and five positive constants αi, 1 ≤ i ≤ 5, such that

α1|x|2 ≤ V (x) ≤ α2|x|2 (10)

L2V (x) ≤ −α3|x|2 (11)

and

|∇V (x)| ≤ α4|x| and |∇2V (x)| ≤ α5 (12)

for all x ∈ IRn, where L2 denotes the infinitesimal generator of the stochastic process
solution of the stochastic differential equation (9).

Applying Itô’s formula to V (xt) where xt is the solution of the stochastic differential
equation (2) and taking the expectation in the resulting equality yields,

d

dt
E(V (xt)) = E(L2V (xt)) + E(∇V (xt)G(xt, ξt)ξt)). (13)

Hence, from Young’s inequality and estimates (10) and (11) one gets,

d

dt
E(V (xt)) ≤ −

α3

α2
E(V (xt)) + cE

(
|∇V (xt)|2

)
+

1

c
||G||2∞E

(
|ξt|2

)
(14)

where c > 0 and ||G||∞ = sup(x,ξ)∈IRn×IRp |G(x, ξ)|.

Moreover, since according with Theorem 4.2, the equilibrium solution of the stochastic
differential system (6)–(7) is exponentially stable in mean square it yields,

E(|ξt|2) ≤ β1
∣∣∣∣( ξ0

ξ0 − ξ0

)∣∣∣∣2 e−β2t (15)

for some positive constants β1 and β2 and hence,

d

dt
E(V (xt)) ≤

(
−α3

α2
+ c

α2
4

α1

)
E(V (xt)) +

1

c
β1||G||2∞

∣∣∣∣( ξ0
ξ0 − ξ0

)∣∣∣∣2 e−β2t.

As a consequence, since the constant β2 in (15) can be chosen small enough so that

β2 <
α3

2α2
, setting c = α1

α2
4

(
α3

α2
− 2β2

)
and applying Gronwall’s lemma to the previous

inequality yields
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E(V (xt)) ≤ E(V (x0))e−2β2t +
1

c

β1
β2
||G||2∞

∣∣∣∣( ξ0
ξ0 − ξ0

)∣∣∣∣2 (e−2β2t + 2e−β2t
)

and therefore, taking (10) into account, one gets

E
(
|xt|2

)
≤

(
α2

α1
|x0|2 +

3

c

β1
α1β2

||G||2∞
∣∣∣∣( ξ0

ξ0 − ξ0

)∣∣∣∣2
)

e−β2t. (16)

Hence, the equilibrium solution of the closed–loop system deduced from the original
system with the feedback law u = Kξt is exponentially stable in mean square and con-
sequently, the control law u = Kξt is a stabilizing feedback for the composite stochastic
system (2)–(4). �

Example 5.2. Assume that the processes ξt and yt are given by

dξt =

((
0 1
1 0

)
ξt +

(
0
1

)
u

)
dt+

(
1 0
0 1

)
ξtdvt

and

yt =
(

0 1
)
ξt

and that the equilibrium solution xt ≡ 0 of the nonlinear stochastic differential equation
(9) is exponentially stable in mean square. Then, it is easy to verify that the hypothesis

of Theorem 5.1 are satisfied with K =
(
−17/16 −1/2

)
and L =

(
17/16
1/2

)
and

therefore the overall system is stabilizable by means of the feedback law u given by
u = Kξt where

(
ξt
)
t≥0 is the stochastic Luenberger observer given by (5).

6. CONCLUSION

In this paper we have investigated the stabilization (in the sense of exponential stability
in mean square) of partially linear composite stochastic systems by means of a stochas-
tic observer. The technique presented in section 4 to design the stochastic Luenberger
observer may be extended to obtain stochastic observers for nonlinear stochastic differ-
ential systems by generalizing to the stochastic context the methods developed among
others by Gauthier and Kupka [11] or Hu [12] for example. This task is under investi-
gation and will be the subject of future publications. Based on the research works of
Zhou, Xiao and Lu [28] or Ghanes, De Leon and Barbot [10] for example, the technique
exposed in this paper can be extended to stochastic differential systems with time–delays
and may then be applied to the study of delayed neural networks introduced by Zhang,
Han and Wang [27] or Zhang, Han, Ge and Zhang [26] for example. Note also that the
stochastic observers introduced in this paper may be used when studying specific cases
of communication protocols like those exposed by Ding, Wang and Han [5] or Ding, Han,
Wang and Ge [4].

(Received February 19, 2021)
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