Kybernetika 58 no. 4, 564-577, 2022

Relations between multidimensional interval-valued variational problems and variational inequalities

Anurag Jayswal and Ayushi BaranwalDOI: 10.14736/kyb-2022-4-0564


In this paper, we introduce a new class of variational inequality with its weak and split forms to obtain an $LU$-optimal solution to the multi-dimensional interval-valued variational problem, which is a wider class of interval-valued programming problem in operations research. Using the concept of (strict) $LU$-convexity over the involved interval-valued functionals, we establish equivalence relationships between the solutions of variational inequalities and the (strong) $LU$-optimal solutions of the multi-dimensional interval-valued variational problem. In addition, some applications are constructed to illustrate the established results.


$LU$-convexity, $LU$-optimal solution, multi-dimensional inter-valued variational problem, variational inequality


26B25, 26D10, 49J40, 90C30


  1. T. Antczak: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Sci. 37 (2017), 1133-1150.   DOI:10.1016/S0252-9602(17)30062-0
  2. A. Baranwal, A. Jayswal and Preeti: Robust duality for the uncertain multitime control optimization problems. Int. J. Robust Non. Control. 32 (2022), 5837-5847.   DOI:10.1002/rnc.6113
  3. M. Boczek and M. Kaluszka: On the minkowski-holder type inequalities for generalized sugeno integrals with an application. Kybernetika 52 (2016), 329-347.   DOI:10.14736/kyb-2016-3-0329
  4. M. A. Hanson: Bounds for functionally convex optimal control problems. J. Math. Anal. Appl. 8 (1964), 84-89.   DOI:10.1016/0022-247x(64)90086-1
  5. P. Hartman and G. Stampacchia: On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966), 271-310.   DOI:10.1007/BF02392210
  6. A. Jayswal and Preeti: An exact minimax penalty function approach to solve multitime variational problems. RAIRO Oper. Res.54 (2020), 637-652.   DOI:10.1051/ro/2019019
  7. A. Jayswal, S. Singh and and A. Kurdi: Multitime multiobjective variational problems and vector variational-like inequalities. Eur. J. Oper. Res. 254 (2016), 739-745.   DOI:10.1016/j.ejor.2016.05.006
  8. A. Jayswal, I. Stancu-Minasian and I. Ahmad: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127.   DOI:10.1016/j.amc.2011.09.041
  9. S. Jha, P. Das and S. Bandhyopadhyay: Characterization of $LU$-efficiency and saddle-point criteria for $F$-approximated multiobjective interval-valued variational problems. Results Control Optim. 4 (2021), 100044.   DOI:10.1016/j.rico.2021.100044
  10. X. Li, Y. Li and W. Zheng: Division schemes under uncertainty of claims. Kybernetika 57 (2021), 840-855.   DOI:10.14736/kyb-2021-5-0840
  11. Y. Liu: Variational Inequalities and Optimization Problems. PhD. Thesis, University of Liverpool, 2015.   CrossRef
  12. R. E. Moore: Interval Analysis. Prentice-Hall, Englandeood Cliffs, NJ 1966.   CrossRef
  13. R. E. Moore: Methods and applications of interval analysis. SIAM, Studies in Appllied Mathematics 2, Philadelphia 1979.   CrossRef
  14. T. Roubicek: Evaluation of clarke's generalized gradient in optimization of variational inequalities. Kybernetika 25 (1989), 157-168.   DOI:10.1016/0198-8859(89)90079-7
  15. G. Ruiz-Garzón, R. Osuna-Gómez and J. Ruiz-Zapatero: Mixed variational inequality interval-valued problem: Theorems of existence of solutions. Taiwan. J. Math. 1 (2022), 1-24.   DOI:10.1155/2022/2085717
  16. S. Treanţ\u{a}: On a new class of interval-valued variational control problems. In: Metric Fixed Point Theory, p. 211-226. Springer, 2021.   CrossRef
  17. S. Treanţ\u{a}: Characterization results of solutions in interval-valued optimization problems with mixed constraints. J. Glob. Optim. 82 (2022), 951-964.   DOI:10.1007/s10898-021-01049-4
  18. S. Treanţ\u{a}: On a class of interval-valued optimization problems. Contin. Mech. Thermodyn. 34 (2022), 617-626.   DOI:10.1007/s00161-022-01080-0
  19. S. Treanţ\u{a}: On some vector variational inequalities and optimization problems. AIMS Math. 7 (2022), 14434-14443.   DOI:10.3934/math.2022795
  20. J. Zhang, S. Liu, L. Li and Q. Feng: The $KKT$ optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014), 607-631.   CrossRef
  21. J. Zhang, Q. Zheng, X. Ma and L. Li: Relationships between interval-valued vector optimization problems and vector variational inequalities. Fuzzy Optim. Decis. Mak. 15 (2016), 33-55.   DOI:10.1007/s10700-015-9212-x