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RELATIONS BETWEEN MULTIDIMENSIONAL INTERVAL
-VALUED VARIATIONAL PROBLEMS AND VARIATIONAL
INEQUALITIES

Anurag Jayswal and Ayushi Baranwal

In this paper, we introduce a new class of variational inequality with its weak and split forms
to obtain an LU -optimal solution to the multi-dimensional interval-valued variational problem,
which is a wider class of interval-valued programming problem in operations research. Using
the concept of (strict) LU -convexity over the involved interval-valued functionals, we establish
equivalence relationships between the solutions of variational inequalities and the (strong) LU -
optimal solutions of the multi-dimensional interval-valued variational problem. In addition,
some applications are constructed to illustrate the established results.
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1. INTRODUCTION

Interval-valued optimization is a developing area of operations research that plays a
vital role in addressing the uncertainty in optimization problems. Since it allows to
represent and deal with the problems which involve numerically inaccurate data varying
in a range. For instance, it is not possible sometimes to know accurately the factors and
variables involved in many industries and economic processes. These problems can be
efficiently described by modeling them as interval-valued optimization problems, and one
can adequately predict the optimal solutions. Moore [12, 13] introduced the concept of
interval analysis to solve optimization problems with interval-valued objective functions.
Recently, Li et al. [10] classified the division problems involving uncertainty of claims
where each claimant’s claim can vary within a closed interval into division problems
under interval uncertainty and solved the problem under study. For more insights in
this area readers are suggested to see the articles [1, 2, 8, 20] and references therein.

Further, it has been observed that variational inequalities are very useful instruments
for solving the optimization problems. In 1966, Hartman and Stampacchia [5] first intro-
duced the concept of a variational inequality and proved the existence and uniqueness
of its solutions. Roubicek [14] solved a nonsmooth optimization problem governed by
variational inequalities with linear constraints using Clark’s generalized gradient and
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proposed a subgradient algorithm. Since then, this area has gained vast attention, and
many authors have efficiently investigated the association between variational inequal-
ities and optimization problems (see [3, 7, 11, 19] and their references). Recently, an
intense study has been done to establish a specific alliance between the solution of
the variational inequality and interval-valued optimization problems. Zhang et al. [21]
derived the relationships between the solutions of interval-valued vector optimization
problems and vector variational inequalities under the assumption of LU-convexity. In
[15], Ruiz et al. investigated the correlations between generalized Stampacchia varia-
tional inequalities and a class of nonsmooth interval-valued programming problems.

On the other hand, numerous studies have been done on multi-dimensional variational
problems that emerged from the calculus of variations. The association between opti-
mization and variational calculus was first introduced by Hanson [4]. Afterward, many
researchers began to show an interest in this field. For instance, Jha et al. [9] investigated
some results for a class of interval-valued variational problem via its associated modi-
fied problems and saddle point criteria under the assumption of generalized convexity.
In [16, 18], Treanţă considered a class of multi-dimensional interval-valued variational
control problem and constructed several alliances between its KT-pseudoinvex point,
optimal solution, and a saddle-point of the interval-valued Lagrange functional. Very
recently, Treanţă [17] has given the optimality conditions for a class of multi-dimensional
interval-valued variational problems and obtain the optimal solution.

Motivated by the research works mentioned above, we consider a multi-dimensional
interval-valued variational problem and introduced a class of (weak and split) variational
inequalities involving the multiple-integral functionals. We establish various equivalence
relations between the (strong) LU -optimal solutions of the considered multi-dimensional
interval-valued variational problems and solutions of the variational inequalities by im-
posing the assumption of LU -convexity over the involved functionals. The novelty el-
ement in this paper is that we introduce the variational inequality associated with the
multi-dimensional interval-valued variational problem, which deals with the uncertainty
given in a range of intervals. Further, some illustrative examples are formulated to give
a better insight of the results. The application given means to minimize the production
cost of a production firm and find an optimal output function for constructed industrial
problem.

The management of this article is as follows: section 2 contains some basic notations,
definitions, and formulation of the problem. In section 3, we establish several correla-
tions between the considered multi-dimensional interval-valued variational problem and
variational inequalities. Finally, section 4 concludes the paper.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this section we consider some notations and basic concepts that will assist in framing
the problem and presenting the main results.

⇒ Rm and Rn are the Euclidean spaces of dimensions m and n, respectively.

⇒ Θ = Θt0,t1 ⊂ Rm is a hyperparallelepiped, fixed by the diagonally opposite points
t0 = (tα0 ), t1 = (tα1 ), α = 1,m and the point t = (tα) ∈ Θ, α = 1,m.
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⇒ dω = dt1dt2 . . . dtm denote the volume element in Θ ⊂ Rm.

⇒ Dα be the total differential operator.

⇒ V ⊂ Rn be the space of piecewise smooth state function v(t) : Θ 7→ Rn and its point

v(t) = (vi(t)) ∈ Rn, i = 1, n. ∂v(t)
∂tα = vα(t) denote the partial derivative of v(t)

with respect to tα, α = 1,m.

⇒ let A be the set of all closed and bounded intervals in R.

⇒ W = [wL, wU ], Z = [zL, zU ] ∈ A, where wL, zL indicate the lower bound, and wU , zU

indicate the upper bound of W and Z, respectively.

Throughout this paper, the interval operations can be performed as follows:

• W = Z ⇒ wL = zL and wU = zU ,

• if wL = wU = w then W = [w,w] = w,

• W + Z = [wL + zL, wU + zU ],

• −W = −[wL, wU ] = [−wU ,−wL],

• W − Z = [wL − zU , wU − zL],

• u+W = [u+ wL, u+ wU ], u ∈ R,

• uW = [uwL, uwU ], u ∈ R, u ≥ 0,

• uW = [uwU , uwL], u ∈ R, u < 0.

⇒ Also, we use the following conventions for the intervals W, Z ∈ A:

• W �LU Z iff wL ≤ zL and wU ≤ zU ,

• W ≺LU Z iff W �LU Z and W 6= Z.

Definition 2.1. A functional f : Θ×V ×V 7→ A is said to be interval-valued functional,
if it is defined by∫

Θ

f(t, v(t), vα(t)) dω =

[∫
Θ

fL(t, v(t), vα(t)) dω,

∫
Θ

fU (t, v(t), vα(t)) dω

]
,

where t ∈ Θ and
∫

Θ
fL(t, v(t), vα(t)) dω,

∫
Θ
fU (t, v(t), vα(t)) dω are real-valued func-

tionals satisfying the condition
∫

Θ
fL(t, v(t), vα(t)) dω ≤

∫
Θ
fU (t, v(t), vα(t))ω.

Note: From now onward, we assume f : Θ×V ×V 7→ A be an interval-valued functional.
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Definition 2.2. (Jayswal and Preeti [6]) Let V ⊂ Rn be a convex set and ψ : Θ×V ×
V 7→ R be the real valued functional. Then the functional

∫
Θ
ψ(t, v(t), vα(t)) dω is said

to be (strictly) convex at v0 ∈ V , if∫
Θ

ψ(t, v(t), vα(t)) dω −
∫

Θ

ψ(t, v0(t), v0
α(t)) dω ≥ (>)

∫
Θ

∂ψ

∂v
(t, v0(t), v0

α(t))(v − v0) dω

+

∫
Θ

∂ψ

∂vα
(t, v0(t), v0

α(t))Dα(v − v0) dω, ∀v ∈ V.

Remark 2.3. If the above inequality holds for any v0, v ∈ V , then the functional∫
Θ
ψ(t, v(t), vα(t)) dω is said to be (strictly) convex on V .

Definition 2.4. If both the real valued functionals
∫

Θ
fL(t, v(t), vα(t)) dω and∫

Θ
fU (t, v(t), vα(t)) dω are convex at v0 ∈ V , then the interval-valued functional∫

Θ
f(t, v(t), vα(t)) dω = [

∫
Θ
fL(t, v(t), vα(t)) dω,

∫
Θ
fU (t, v(t), vα(t)) dω] is known as

LU -convex at v0 ∈ V .

Definition 2.5. If the two real valued functionals
∫

Θ
fL(t, v(t), vα(t)) dω and∫

Θ
fU (t, v(t), vα(t)) dω are convex and at least one of them is strictly convex at v0 ∈

V , then the interval-valued functional
∫

Θ
f(t, v(t), vα(t)) dω = [

∫
Θ
fL(t, v(t), vα(t)) dω,∫

Θ
fU (t, v(t), vα(t)) dω] is known as strictly LU -convex at v0 ∈ V .

Now, considering the above mathematical tools, we formulate the following multi-
dimensional interval-valued variational problem (VP) as:

(VP) min
v(·)

∫
Θ

f(t, v(t), vα(t)) dω =

[∫
Θ

fL(t, v(t), vα(t)) dω,

∫
Θ

fU (t, v(t), vα(t)) dω

]
subject to

Gβ(t, v(t), vα(t)) ≤ 0, β ∈ Q = 1, q, (1)

v(t0) = v0, v(t1) = v1, (2)

where t ∈ Θ, f : Θ × V × V 7→ A is an interval-valued functional and the functionals
fL, fU , Gβ : Θ× V × V 7→ R, β ∈ Q = 1, q are continuously differentiable.

We denote the set of feasible solutions to (VP) as

S = {v ∈ V |Gβ(t, v(t), vα(t)) ≤ 0, v(t0) = v0, v(t1) = v1}.

Throughout the paper we consider the S is convex subset of V .
For the convenience of presentation let us utilize the following notions: v = v(t),

π = (t, v(t), vα(t)), π0 = (t, v0(t), v0
α(t)), fv = ∂f

∂v , fvα = ∂f
∂vα

, fLv = ∂fL

∂v , f
L
vα =

∂fL

∂vα
, fUv = ∂fU

∂v , f
U
vα = ∂fU

∂vα
.

Definition 2.6. A point v0 ∈ S is said to be an (strong) LU -optimal solution to (VP)
if there exists no other point v ∈ S, such that∫

Θ

f(π) dω (�LU ) ≺LU
∫

Θ

f(π0) dω.



568 A. JAYSWAL AND A. BARANWAL

Now, to obtain the optimality for the problem (VP) and prove main results, we
construct the following variational inequalities:

(i) Find v0 ∈ S such that there exist no other v ∈ S, satisfying the following varia-
tional inequality

(VI)

∫
Θ

{
fLv (π0) + fUv (π0)

}
(v − v0) dω

+

∫
Θ

{
fLvα(π0) + fUvα(π0)

}
Dα(v − v0) dω ≤ 0.

(ii) Find v0 ∈ S such that there exist no other v ∈ S, satisfying the following weak
variational inequality

(WVI)

∫
Θ

{
fLv (π0) + fUv (π0)

}
(v − v0) dω

+

∫
Θ

{
fLvα(π0) + fUvα(π0)

}
Dα(v − v0) dω < 0.

(iii) Find v0 ∈ S such that for all v ∈ S, the following split variational inequalities

(SVI)

∫
Θ

fLv (π0)(v − v0) dω +

∫
Θ

fLvα(π0)Dα(v − v0) dω > 0,∫
Θ

fUv (π0)(v − v0) dω +

∫
Θ

fUvα(π0)Dα(v − v0) dω > 0,

hold.

Next example will verify that the above mentioned variational inequality (VI) is solvable
at a given point.

Example 2.7. Let Θ = [0, 4]×[0, 4], V = R+, A ⊂ R and the interval-valued functional
f : Θ× V × V 7→ A as:∫

Θ

f(π) dω =
[ ∫

Θ

fL(π) dω,

∫
Θ

fU (π) dω
]

=
[ ∫

Θ

(ev
2

− 1) dω,

∫
Θ

(2v + 4) dω
]
,

where fL, fU : Θ× V × V 7→ R are continuously differentiable. Further, we can easily
observe that v0 = 0 is a solution for the associated variational inequality (VI), as for all
other v ∈ V , we have∫

Θ

{
fLv (π0) + fUv (π0)

}
(v − v0) dω +

∫
Θ

{
fLvα(π0) + fUvα(π0)

}
Dα(v − v0) dω

=

∫
Θ

{
2v0e(v0)2 + 2

}
(v − v0) dω � 0.
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3. RELATIONSHIP BETWEEN THE MULTI-DIMENSIONAL INTERVAL-VALUED
VARIATIONAL PROBLEM (VP) AND VARIATIONAL INEQUALITIES

In this section, we establish some equivalence results among the (strong) LU -optimal so-
lutions of the multi-dimensional interval-valued variational problem (VP) and solutions
of the (weak, split) variational inequalities introduced in the previous section.

Theorem 3.1. Let v0 ∈ S be a solution to the variational inequality (VI). If the
interval-valued functional

∫
Θ
f(π) dω is LU -convex at v0, then v0 is also an LU -optimal

solution to the problem (VP).

P r o o f . Let v0 ∈ S solves the variational inequality (VI). We proceed by the contra-
diction and assume that v0 is not an LU -optimal solution to (VP), then there exist a
point v ∈ S, such that ∫

Θ

f(π) dω ≺LU
∫

Θ

f(π0) dω.

Therefore, one of the following inequality hold∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω ≤
∫

Θ

fU (π0) dω, (3)

or

∫
Θ

fL(π) dω ≤
∫

Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω, (4)

or

∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω. (5)

Since the functional
∫

Θ
f(π) dω is LU -convex at v0 ∈ S, it follows that∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω ≥
∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and

∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω ≥
∫

Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)}dω,

∀ v ∈ S.

In the virtue of the above inequalities, the inequalities (3)-(5) yield∫
Θ

{fLv (π0) + fUv (π0)}(v − v0) dω + {fLvα(π0) + fUvα(π0)}Dα(v − v0) dω ≤ 0,

which contradicts that v0 is a solution of the variational inequality (VI). This completes
the proof. �

Now, we present an application which validates above theorem.

Example 3.2. A production firm of a company produces some goods and the company
wants to minimize the production cost. Production firm has a range of total production
cost as an interval-valued functional given by[ ∫

Θ

fL(π) dt1dt2,

∫
Θ

fU (π) dt1dt2
]

=
[ ∫

Θ

(v2+1) dt1dt2,

∫
Θ

{(e2v+5v−1)2+v+1} dt1dt2
]
,
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where v ∈ V = R is the output function and time t ∈ Θ ⊂ R2 with Θ fixed by
the diagonally opposite points t0 := (t10, t

2
0) = (0, 0), t1 := (t11, t

2
1) = (1, 1) ∈ R2. The

production cost should be minimized subject to the constraint v2−16 ≤ 0, the endpoints
conditions are v(0, 0) = 0 and v(1, 1) = 4. The firm have to find suitable output function
of time which minimizes production cost. This problem can be mathematically modeled
as the following multi-dimensional interval-valued variational problem:

(VP1) min
v(·)

∫
Θ

f(π) dt1dt2 =
[ ∫

Θ

fL(π) dt1dt2,

∫
Θ

fU (π) dt1dt2
]

=
[ ∫

Θ

(v2 + 1) dt1 dt2,

∫
Θ

{(e2v + 5v − 1)2 + v + 1} dt1dt2
]

subject to

v2 − 16 ≤ 0,

v(0, 0) = 0, v(1, 1) = 4,

The set of all feasible solutions to the problem (VP1) is denoted by

S = {v ∈ V : −4 ≤ v ≤ 4, v(0, 0) = 0, v(1, 1) = 4}.

It can be seen that both the functionals
∫

Θ
fL(π) dt1dt2,

∫
Θ
fU (π) dt1dt2 are convex

at v0 = 2(t1 + t2), t1 = t2 = 0. Thus, the interval-valued functional is LU -convex at
v0 = 0.

Since the following inequality∫
Θ

{fLv (π0) + fUv (π0)}(v − v0) + {fLvα(π0) + fUvα}Dα(v − v0) dt1dt2

=

∫
Θ

{2v0 + 4e4v0 + 20v0e2v0 + 6e2v0 + 50v0 − 9}(v − v0) dt1dt2

=

∫
Θ

{2t1 + 2t2} dt1dt2 � 0, ∀t = (t1, t2) ∈ Θ,

holds at v0 = 2(t1 + t2), t1 = t2 = 0, it is a solution to variational inequality (VI). Now
it remains to show that v0 = 0 is an LU -optimal solution to the problem (VP1). It can
be easily verified that the inequality∫

Θ

f(π) dt1dt2 −
∫

Θ

f(π0) dt1 t2

=
[ ∫

Θ

(v2 − (v0)2) dt1dt2,

∫
Θ

{(e2v + 5v − 1)2 + v − (e2v0 + 5v0 − 1)2 − v0} dt1dt2
]

=
[ ∫

Θ

4(t1 + t2)2dt1dt2,

∫
Θ

{(
e(4t1+4t2) + 10(t1 + t2)− 1

)2

+ 2(t1 + t2)
}

dt1dt2
]

⊀LU (0, 0), ∀ t = (t1, t2) ∈ Θ, v 6= v0,

holds, which gives that to minimize the production cost the suitable output function is
v0 = 2(t1 + t2), t1 = t2 = 0. Hence, Theorem 3.1 is verified.
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Theorem 3.3. Let v0 ∈ S be an LU -optimal solution to (VP). If the interval-valued
functional

∫
Θ
−f(π) dω is strictly LU -convex at v0, then v0 is a solution to the variational

inequality (VI).

P r o o f . Let v0 ∈ S is an LU -optimal solution to (VP), then there exists no other point
v ∈ S, such that ∫

Θ

f(π) dω ≺LU
∫

Θ

f(π0) dω,

equivalently,∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω ≤
∫

Θ

fU (π0) dω,

or

∫
Θ

fL(π) dω ≤
∫

Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω,

or

∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω.

Thus, there exists no other point v ∈ S that holds the following inequality∫
Θ

{fL(π) + fU (π)} dω <

∫
Θ

{fL(π0) + fU (π0)}dω. (6)

Now, we proceed by the contradiction and assume that v0 does not solves the variational
inequality (VI), then there exists a point v ∈ S, such that∫

Θ

{fLv (π0) + fUv (π0)}(v − v0) dω +

∫
Θ

{fLvα(π0) + fUvα(π0)}Dα(v − v0) dω ≤ 0. (7)

Since the functional
∫

Θ
−f(π) dω is strictly LU -convex at v0 ∈ S, we get∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω <

∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and

∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω ≤
∫

Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω,

∀ v ∈ S,
or∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω ≤
∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and

∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω <

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω,

∀ v ∈ S,
or∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω <

∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,
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and

∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω <

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω,

∀ v ∈ S.

From the above inequalities, we obtain∫
Θ

{fL(π) + fU (π)} dω −
∫

Θ

{fL(π0) + fU (π0)}dω

<

∫
Θ

{fLv (π0) + fUv (π0)}(v − v0) dω +

∫
Θ

{fLvα(π0) + fUvα(π0)}Dα(v − v0) dω,

∀ v ∈ S,

which together with the inequality (7), yields that the following inequality∫
Θ

{fL(π) + fU (π)}dω <

∫
Θ

{fL(π0) + fU (π0)} dω,

holds for a point v ∈ S, which contradicts the inequality (6). This completes the proof.
�

Theorem 3.4. Let v0 ∈ S solves the split variational inequality (SVI). If the interval-
valued functional

∫
Θ
f(π) dω is LU -convex at v0, then v0 is also a strong LU -optimal

solution to the problem (VP).

P r o o f . Let v0 ∈ S solves the split variational inequality (SVI). We proceed by the
contradiction and assume that v0 is not a strong LU -optimal solution to (VP). Conse-
quently, there exist a point v ∈ S, such that∫

Θ

f(π) dω �LU
∫

Θ

f(π0) dω,

or,∫
Θ

fL(π) dω ≤
∫

Θ

fL(π0) dω and

∫
Θ

fU (π) dω ≤
∫

Θ

fU (π0) dω. (8)

Since the functional
∫

Θ
f(π) dω is LU -convex at v0 ∈ S, we have∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω ≥
∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and

∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω ≥
∫

Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω,

∀ v ∈ S.

In agreement of the inequality (8), the above inequalities yield∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω ≤ 0,∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω ≤ 0,

which contradicts that v0 is a solution to the split variational inequality (SVI). This
completes the proof. �
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Theorem 3.5. Let v0 ∈ S be a strong LU -optimal solution to the problem (VP). If
the interval-valued functional

∫
Θ
−f(π) dω is LU -convex at v0, then v0 solves the split

variational inequality (SVI).

P r o o f . Let v0 ∈ S is a strong LU -optimal solution to the problem (VP). We proceed by
the contradiction and assume that v0 is not a solution of the split variational inequality
(SVI), then there exists some v ∈ S, satisfying the inequalities∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)}dω ≤ 0, (9)∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω ≤ 0, (10)

hold. Since the functional
∫

Θ
−f(π) dω is LU -convex at v0 ∈ S, we have∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω ≤
∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and

∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω ≤
∫

Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω,

∀ v ∈ S.

In agreement of the inequality (9) and (10), the above inequalities yield∫
Θ

fL(π) dω ≤
∫

Θ

fL(π0) dω and

∫
Θ

fU (π) dω ≤
∫

Θ

fU (π0) dω,

for some v ∈ S. Equivalently, for some v ∈ S the following inequality∫
Θ

f(π) dω �LU
∫

Θ

f(π0) dω,

holds, which contradicts that v0 is strong LU -optimal solution to the problem (VP).
This completes the proof. �

Theorem 3.6. Let v0 ∈ S be an LU -optimal solution to the problem (VP). If the
interval-valued functional

∫
Θ
−f(π) dω is LU -convex at v0, then v0 solves the weak

variational inequality (WVI).

P r o o f . Let v0 ∈ S is LU -optimal solution to (VP). Then, there exist no other v ∈ S,
such that ∫

Θ

f(π) dω ≺LU
∫

Θ

f(π0) dω,

equivalently,∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω ≤
∫

Θ

fU (π0) dω,
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or

∫
Θ

fL(π) dω ≤
∫

Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω,

or

∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω.

Thus, there exists no other point v ∈ S, satisfying∫
Θ

{fL(π) + fU (π)} dω <

∫
Θ

{fL(π0) + fU (π0)}dω. (11)

Now, we proceed by the contradiction and assume that v0 is not a solution to the weak
variational inequality (WVI), then there exist a point v ∈ S, such that∫

Θ

{fLv (π0) + fUv (π0)}(v − v0) dω +

∫
Θ

{fLvα(π0) + fUvα(π0)}Dα(v − v0) dω < 0. (12)

Since the functional
∫

Θ
−f(π) dω be LU -convex at v0 ∈ S, we get∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω ≤
∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω ≤
∫

Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω, ∀ v ∈ S.

From the above inequalities, we obtain∫
Θ

{fL(π) + fU (π)} dω −
∫

Θ

{fL(π0) + fU (π0)}dω

≤
∫

Θ

{fLv (π0) + fUv (π0)}(v − v0) dω +

∫
Θ

{fLvα(π0) + fUvα(π0)}Dα(v − v0) dω,

∀ v ∈ S,

which together with the inequality (12), yields the following inequality∫
Θ

{fL(π) + fU (π)}dω <

∫
Θ

{fL(π0) + fU (π0)} dω,

holds for a point v ∈ S, which contradicts the inequality (11). This completes the proof.
�

Theorem 3.7. Let v0 ∈ S solves the weak variational inequality (WVI). If the interval-
valued functional

∫
Θ
f(π) dω is strictly LU -convex at v0, then v0 is an LU -optimal

solution to the problem (VP).

P r o o f . Let v0 ∈ S is a solution of variational inequality (WVI), then there exist no
other v ∈ S, such that∫

Θ

{fLv (π0) + fUv (π0)}(v − v0) dω +

∫
Θ

{fLvα(π0) + fUvα(π0)}Dα(v − v0) dω < 0. (13)
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Now, we proceed by the contradiction and assume that v0 is not an LU -optimal solution
to the variational problem (VP), then there exist v ∈ S, satisfying the inequality∫

Θ

f(π) dω ≺LU
∫

Θ

f(π0) dω,

equivalently,∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω ≤
∫

Θ

fU (π0) dω, (14)

or

∫
Θ

fL(π) dω ≤
∫

Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω, (15)

or

∫
Θ

fL(π) dω <

∫
Θ

fL(π0) dω and

∫
Θ

fU (π) dω <

∫
Θ

fU (π0) dω. (16)

From strict LU -convexity of the functional
∫

Θ
f(π) dω, we get∫

Θ

fL(π) dω −
∫

Θ

fL(π0) dω >

∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω ≥
∫

Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω, ∀v ∈ S,

or

∫
Θ

fL(π) dω −
∫

Θ

fL(π0) dω ≥
∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω >

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)}dω, ∀v ∈ S,

or

∫
Θ

fL(π) dω −
∫

Θ

fL(π0) dω >

∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω,

and∫
Θ

fU (π) dω −
∫

Θ

fU (π0) dω >

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)}dω, ∀v ∈ S.

On combining the above three inequalities with the inequalities (14) – (16), respectively,
we obtain∫

Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω < 0

and

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω ≤ 0,∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)} dω ≤ 0

and

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω < 0,
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∫
Θ

{fLv (π0)(v − v0) + fLvα(π0)Dα(v − v0)}dω < 0

and

∫
Θ

{fUv (π0)(v − v0) + fUvα(π0)Dα(v − v0)} dω < 0.

From the above inequalities, it follows that∫
Θ

{fLv (π0) + fUv (π0)}(v − v0) dω +

∫
Θ

{fLvα(π0) + fUvα(π0)}Dα(v − v0) dω < 0,

holds, for some v ∈ S, which contradicts the inequality (13). This completes the proof.
�

4. CONCLUSIONS

In this paper, we have shown various equivalence relations between solutions of (weak,
split) variational inequalities and (strong) LU -optimal solutions to a class of multi-
dimensional interval-valued variational problem involving multiple integral functional.
The concept of a convex set and the LU -convexity of the involved functionals played
an essential role in establishing the main results. Some examples demonstrated how the
suggested methods can be used, how well they work and applicable.

It would be interesting to derive analogous results for various classes of interval-
valued problems emerging in many areas of operations research for instance non-convex
interval-valued variational problems, multi-dimensional interval-valued variational con-
trol problems, etc.
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