In this study, we consider the Takagi--Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the $n$-dimensional Clifford-valued neural network into $2^mn$-dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen's integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.
global stability, impulses, T-S fuzzy, Clifford-valued neural networks, Lyapunov-Krasovskii functionals
92B20, 34D08, 35R12, 03E72