Kybernetika 58 no. 3, 376-399, 2022

On exact solutions of a class of interval boundary value problems

Nizami A. GasilovDOI: 10.14736/kyb-2022-3-0376

Abstract:

In this article, we deal with the Boundary Value Problem (BVP) for linear ordinary differential equations, the coefficients and the boundary values of which are constant intervals. To solve this kind of interval BVP, we implement an approach that differs from commonly used ones. With this approach, the interval BVP is interpreted as a family of classical (real) BVPs. The set (bunch) of solutions of all these real BVPs we define to be the solution of the interval BVP. Therefore, the novelty of the proposed approach is that the solution is treated as a set of real functions, not as an interval-valued function, as usual. It is well-known that the existence and uniqueness of the solution is a critical issue, especially in studying BVPs. We provide an existence and uniqueness result for interval BVPs under consideration. We also present a numerical method to compute the lower and upper bounds of the solution bunch. Moreover, we express the solution by an analytical formula under certain conditions. We provide numerical examples to illustrate the effectiveness of the introduced approach and the proposed method. We also demonstrate that the approach is applicable to non-linear interval BVPs.

Keywords:

interval differential equations, boundary value problem, bunch of functions, linear differential equations

Classification:

34B05, 93B03, 65G40

References:

  1. Ş. E. Amrahov, A. Khastan, N. Gasilov and A. G. Fatullayev: Relationship between Bede-Gal differentiable set-valued functions and their associated support functions. Fuzzy Sets and Systems 295 (2016), 57-71.   DOI:10.1016/j.fss.2015.12.002
  2. J.-P. Aubin and H. Frankowska: Set-Valued Analysis. Birkhäuser, Boston 1990.   CrossRef
  3. H. T. Banks and M. Q. Jacobs: A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970), 246-272.   DOI:10.1016/0022-247X(70)90078-8
  4. B. Bede and S. G. Gal: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Systems 151 (2005), 581-599.   DOI:10.1016/j.fss.2004.08.001
  5. T. F. Bridgland: Trajectory integrals of set-valued functions. Pacific J. Math. 33 (1970), 1, 43-68.   DOI:10.2140/pjm.1970.33.43
  6. Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores and M. D. Jiménez-Gamero: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems 219 (2013), 49-67.   DOI:10.1016/j.fss.2012.12.004
  7. T. M. da Costa, Y. Chalco-Cano, W. A. Lodwick and G. N. Silva: A new approach to linear interval differential equations as a first step toward solving fuzzy differential. Fuzzy Sets Systems 347 (2018), 129-141.   DOI:10.1016/j.fss.2017.10.008
  8. N. A. Gasilov and Ş. E. Amrahov: Solving a nonhomogeneous linear system of interval differential equations. Soft Computing 22 (2018), 12, 3817-3828.   DOI:10.1007/s00500-017-2818-x
  9. N. A. Gasilov, Ş. E. Amrahov, A. G. Fatullayev and I. F. Hashimoglu: Solution method for a boundary value problem with fuzzy forcing function. Inform. Sci. 317 (2015), 349-368.   DOI:10.1016/j.ins.2015.05.002
  10. N. A. Gasilov and Ş. E. Amrahov: On differential equations with interval coefficients. Math. Methods Appl. Sci. 43 (2020), 4, 1825-1837.   DOI:10.1002/mma.6006
  11. N. A. Gasilov and M. Kaya: A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters. Int. J. Comput. Methods 16 (2019), 7, Article 1850115.   DOI:10.1142/S0219876218501153
  12. N. V. Hoa: The initial value problem for interval-valued second-order differential equations under generalized H-differentiability. Inform. Sci. 311 (2015), 119-148.   DOI:10.1016/j.ins.2015.03.029
  13. M. Hukuhara: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967), 205-223.   CrossRef
  14. E. Hüllermeier: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 2, 117-137.   DOI:10.1142/S0218488597000117
  15. R. B. Kearfott and V. Kreinovich: Applications of Interval Computations. Kluwer Academic Publishers, 1996.   DOI:10.1007/978-1-4613-3440-8
  16. A. Khastan, R. Rodriguez-Lopez and M. Shahidi: New differentiability concepts for set-valued functions and applications to set differential equations. Inform. Sci. 575 (2021), 355-378.   DOI:10.1016/j.ins.2021.06.014
  17. V. Lakshmikantham, T. G. Bhaskar and J. V. Devi: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publ., Cambridge 2006.   CrossRef
  18. M. T. Malinowski: Interval Cauchy problem with a second type Hukuhara derivative. Inform. Sci. 213 (2012), 94-105.   DOI:10.1016/j.ins.2012.05.022
  19. M. T. Malinowski: On existence theorems to symmetric functional set-valued differential equations. Symmetry 13 (2021), 7, 1219.   DOI:10.3390/sym13071219
  20. S. Markov: Calculus for interval functions of a real variable. Computing 22 (1979), 325-337.   DOI:10.1007/BF02265313
  21. M. T. Mizukoshi and W. A. Lodwick: The interval eigenvalue problem using constraint interval analysis with an application to linear differential equations. Fuzzy Sets Systems 419 (2021), 141-157.   DOI:10.1016/j.fss.2020.10.013
  22. R. E. Moore: Methods and Applications of Interval Analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia 1979.   CrossRef
  23. R. E. Moore, R. B. Kearfott and M. J. Cloud: Introduction to Interval Analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia 2009.   CrossRef
  24. H. Myšková: Max-min interval systems of linear equations with bounded solution. Kybernetika 48 (2012), 2, 299-308.   CrossRef
  25. A. V. Plotnikov: Differentiation of multivalued mappings. \textit{T}-derivative. Ukrainian Math. J. 52 (2000), 8, 1282-1291.   DOI:10.1023/A:1010361206391
  26. A. D. Polyanin and V. F. Zaitsev: Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems. CRC Press, Taylor and Francis Group, LLC, Boca Raton 2018.   CrossRef
  27. M. S. Rahman, S. Das, A. K. Manna, A. A. Shaikh, A. K. Bhunia, A. Ahmadian and S. Salahshour: A new approach based on inventory control using interval differential equation with application to manufacturing system. Discrete Continuous Dynamical Systems - S 15 (2022), 2, 457-480.   DOI:10.3934/dcdss.2021117
  28. L. Stefanini and B. Bede: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods Appl. 71 (2009), 3-4, 1311-1328.   DOI:10.1016/j.na.2008.12.005
  29. J. Tao and Z. Zhang: Properties of interval-valued function space under the gH-difference and their application to semi-linear interval differential equations. Adv. Differ. Equations 45 (2016), 1-28.   DOI:10.1186/s13662-016-0759-9
  30. H. Wang and R. Rodriguez-Lopez: Boundary value problems for interval-valued differential equations on unbounded domains. Fuzzy Sets Systems 436 (2022), 102-127.   DOI:10.1016/j.fss.2021.03.019
  31. H. Wang, R. Rodriguez-Lopez and A. Khastan: On the stopping time problem of interval-valued differential equations under generalized Hukuhara differentiability. Inform. Sci. 579 (2021), 776-795.   DOI:10.1016/j.ins.2021.08.012