Kybernetika 58 no. 1, 64-81, 2022

A new approach for KM-fuzzy partial metric spaces

Yu Shen, Chong Shen and Conghua YanDOI: 10.14736/kyb-2022-1-0064

Abstract:

The main purpose of this paper is to give a new approach for partial metric spaces. We first provide the new concept of KM-fuzzy partial metric, as an extension of both the partial metric and KM-fuzzy metric. Then its relationship with the KM-fuzzy quasi-metric is established. In particularly, we construct a KM-fuzzy quasi-metric from a KM-fuzzy partial metric. Finally, after defining the notion of partial pseudo-metric systems, a one-to-one correspondence between partial pseudo-metric systems and KM-fuzzy partial pseudo-metrics is constructed. Furthermore, a fuzzifying topology $\tau_{P}$ on X deduced from KM-fuzzy partial metric is established and some properties of this fuzzifying topology are discussed.

Keywords:

partial metric, KM-fuzzy metric, KM-fuzzy partial metric, partial pseudo-metric system, fuzzy neighborhood system

Classification:

54A40, 46S40

References:

  1. M. Fréchet: Sur quelques points du calcul fonctionel. Rend. Circ. Mat. Palermo 22 (1906), 1-72.   DOI:10.3406/abpo.1906.1239
  2. A. George and P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 395-399.   DOI:10.1016/0165-0114(94)90162-7
  3. A. George and P. Veeramani: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 933-940.   CrossRef
  4. S. Han, J. Wu and D. Zhang: Properties and principles on partial metric spaces. Topology Appl. 230 (2017), 77-98.   DOI:10.1016/j.topol.2017.08.006
  5. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   CrossRef
  6. I. Kramosil and J. Michálek: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 336-344.   CrossRef
  7. S. G. Matthews: Partial metric topology. In: General Topology and its Applications. Proc. 8th summer Conference on general Topology and Applicationsh., Queen's College, Ann. New York Acad. Sci. 728 (1994), 183-197.   DOI:10.1111/j.1749-6632.1994.tb44144.x
  8. K. Menger: Statistical Metrics. Proc. National Academy of Sciences of the United States of America 28 (1942), 535-537.   CrossRef
  9. S. J. O'Neill: A Fundamental Study Into the Theory and Application of the Partial Metric Spaces. University of Warwick, Coventry 1998.   CrossRef
  10. B. Pang and F. G. Shi: Characterizations of $(L, M)$-fuzzy pseudo-metrics by pointwise pseudo-metric chains. J. Intell. Fuzzy Systems 27 (2014), 2399-2407.   DOI:10.3233/ifs-141209
  11. S. Romaguera and M. Schellekens: Duality and quasi-normability for complexity spaces. Appl. Gen. Topol. 3 (2002), 91-112.   DOI:10.4995/agt.2002.2116
  12. S. Romaguera, E. A. Sánchez-Pérez and O. Valero: Quasi-normed monoids and quasi-metrics. Publ. Math. Debrecen 62 (2003), 53-69.   DOI:10.1093/occmed/kqg001
  13. B. Schweizer and A. Sklar: Statistical metric spaces. Pac. J. Math. 10 (1960), 314-334.   CrossRef
  14. B. Schweizer and A. Sklar: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983.   CrossRef
  15. V. Gregori, J. Miñana and D. Miravet: Fuzzy partial metric spaces. Int. J. Gen. Syst. 48 (2019), 3, 260-279.   DOI:10.1080/03081079.2018.1552687
  16. F. G. Shi: Pointwise pseudo-metrics in $L$-fuzzy set theory. Fuzzy Sets and Systems 121 (2001), 209-216.   DOI:10.1016/s0165-0114(00)00013-0
  17. F. G. Shi: $(L, M)$-fuzzy metric spaces. Indian J. of Math. 52 (2010), 231-250.   CrossRef
  18. Y. Shi, C. Shen and F. G. Shi: $L$-partial metrics and their topologies. Int. J. Approx. Reason. 121 (2020), 125-134.   DOI:10.1016/j.ijar.2020.03.006
  19. J. Wu and Y. Yue: Formal balls in fuzzy partial metric space. Iran. J. Fuzzy Syst. 14 (2017), 2, 155-164.   DOI:10.22111/ijfs.2017.3138
  20. L. Xu: Characterizations of fuzzifying topologies by some limit structures. Fuzzy Sets Systems 123 (2001), 169-176.   DOI:10.1016/s0165-0114(00)00103-2
  21. M. Ying: A new approach for fuzzy topology (I). Fuzzy Sets Systems 39 (1991), 303-321.   DOI:10.1016/0165-0114(91)90100-5
  22. Y. Yue and F. Shi: On fuzzy pseudo-metric spaces. Fuzzy Sets Systems 161 (2010), 1105-1106.   DOI:10.1016/j.fss.2009.10.001
  23. Y. Yue and M. Gu: Fuzzy partial (pseudo-)metric spaces. J. Intell. Fuzzy Systems 27 (2014), 1153-1159.   DOI:10.3233/ifs-131078
  24. Y. Yue: Separated $\triangle^+$-valued equivalences as probabilistic partial metric spaces. J. Intell. Fuzzy Systems 28 (2015), 6, 2715-2724.   DOI:10.3233/ifs-151549