Kybernetika 57 no. 6, 939-957, 2021

Structural identifiability analysis of nonlinear time delayed systems with generalized frequency response functions

Gergely Szlobodnyik and Gábor SzederkényiDOI: 10.14736/kyb-2021-6-0939


In this paper a novel method is proposed for the structural identifiability analysis of nonlinear time delayed systems. It is assumed that all the nonlinearities are analytic functions and the time delays are constant. We consider the joint structural identifiability of models with respect to the ordinary system parameters and time delays by including delays into a unified parameter set. We employ the Volterra series representation of nonlinear dynamical systems and make use of the frequency domain representations of the Volterra kernels, i. e. the Generalized Frequency Response Functions (GFRFs), in order to test the unique computability of the parameters. The advantage of representing nonlinear systems with their GFRFs is that in the frequency domain representation the time delay parameters appear explicitly in the exponents of complex exponential functions from which they can be easily extracted. Since the GFRFs can be symmetrized to be unique, they provide us with an exhaustive summary of the underlying model structure. We use the GFRFs to derive equations for testing structural identifiability. Unique solution of the composed equations with respect to the parameters provides sufficient conditions for structural identifiability. Our method is illustrated on non-linear dynamical system models of different degrees of non-linearities and multiple time delayed terms. Since Volterra series representation can be applied for input-output models, it is also shown that after differential algebraic elimination of unobserved state variables, the proposed method can be suitable for identifiability analysis of a more general class of non-linear time delayed state space models.


structural identifiability, Volterra series, generalized frequency response




  1. M. Anguelova and B. Wennberg: State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44 (2008), 5, 1373-1378.   DOI:10.1016/j.automatica.2007.10.013
  2. S. Audoly et. al.: Global identifiability of nonlinear models of biological systems. IEEE. Trans. Biomed. Engrg. 48 (2001), 55-65.   DOI:10.1109/10.900248
  3. R. S. Bayma and Z. Q. Lang: A new method for determining the generalised frequency response functions of nonlinear systems. IEEE Trans. Circuits Systems I 59 (2012), 12, 3005-3014.   DOI:10.1109/TCSI.2012.2206454
  4. E. Bedrosian and S. O. Rice: The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59 (1971), 12, 1688-1707.   DOI:10.1109/PROC.1971.8525
  5. L. Belkoura and Y. Orlov: Identifiability analysis of linear delay-differential systems. IMA J. Math. Control Inform. 19 (2002), 73-81.   DOI:10.1093/imamci/19.1\_and\_2.73
  6. R. Bellman and K. J. Aström: On structural identifiability. Math. Biosci. 7 (1970), 3-4, 329-339.   DOI:/10.1016/0025-5564(70)90132-X
  7. G. Bellu et. al.: DAISY: A new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 88 (2007), 52-61.   DOI:10.1016/j.cmpb.2007.07.002
  8. S. A. Billings and K. M. Tsang: Spectral analysis for nonlinear systems, Part I: parametric nonlinear spectral analysis. Mechanic. Systems Signal Process. 3 (1989), 4, 319-339.   DOI:10.1016/0888-3270(89)90041-1
  9. G. A. Bocharov and F. A. Rihan: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125 (2000), 1-2, 183-199.   CrossRef
  10. C. M. Cheng, Z. K. Peng, W. M. Zhang and G. Meng: Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mech. Systems Signal Process. 87 (2017), 340-364.   DOI:10.1016/j.ymssp.2016.10.029
  11. O. T. Chis, J. R. Banga and E. Balsa-Canto: Structural identifiability of systems biology models: a critical comparison of methods. PloS One 6 (2011), 11.   CrossRef
  12. A. N. Churilov, A. Medvedev and Z. T. Zhusubaliyev: Impulsive Goodwin oscillator with large delay: Periodic oscillations, bistability, and attractors. Nonlinear Analysis: Hybrid Systems 21 (2016), 171-183.   DOI:10.1016/j.nahs.2015.08.004
  13. K. Cooke, P. Van den Driessche and X. Zou: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biology 39 (1999), 4, 332-352.   DOI:10.1007/s002850050194
  14. L. Denis–Vidal, G. Joly–Blanchard and C. Noiret: Some effective approaches to check the identifiability of uncontrolled nonlinear systems. Math. Comput. Simul. 57 (2000), 35-44.   DOI:10.1016/s0378-4754(01)00274-9
  15. I. R. Epstein and Y. Luo: Differential delay equations in chemical kinetics. Nonlinear models. The cross-shaped phase diagram and the oregonator. J. Chem. Phys. 95 (1991), 244-254.   DOI:10.1063/1.461481
  16. M. Fliess: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981), 3-40.   CrossRef
  17. D. George: Continuous Nonlinear Systems. MIT RLE Technical Report No. 355, 1959.   CrossRef
  18. T. Glad: Nonlinear state space and input-output descriptions using differential polynomials. In Descusse. Lecture Notes in Control and Information Science J. (M. Fliess, A. Isidori and D. Leborgne, eds.), Vol. 122., Springer Berlin.   CrossRef
  19. K. Hermann and A. Krener: Nonlinear controllability and observability. IEEE Trans. Automat. Control, 22 (1977), 5, 728-740.   DOI:10.1109/TAC.1977.1101601
  20. B. Huang et. al.: Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops. Physical Review E 94 (2016), 5, 052413.   DOI:10.1103/physreve.94.052413
  21. A. Isidori: Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin 1989.   CrossRef
  22. Y. Kuang: Delay Differential Equations With Applications in Population Dynamics. Academic Press, Boston 1993.   CrossRef
  23. A. Lapytsko and J. Schaber: The role of time delay in adaptive cellular negative feedback systems. J. Theoret. Biology 398 (2016), 64-73.   DOI:10.1016/j.jtbi.2016.03.008
  24. J. Li, Y. Kuang and C. C. Mason: Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J. Theoret. Biology 242 (2006), 3, 722-735.   DOI:10.1016/j.jtbi.2006.04.002
  25. E. Liz and A. Ruiz-Herrera: Delayed population models with Allee effects and exploitation. Math. Biosci. Engrg. 12 (2015), 1, 83-97.   CrossRef
  26. L. Ljung: System Identification: Theory for the User. Second edition, Prentice-Hall, Upper Saddle River, NJ 1999.   CrossRef
  27. L. Ljung and T. Glad: On global identifiability for arbitrary model parametrizations. Automatica 30 (1994), 2, 265-276.   DOI:10.1016/0005-1098(94)90029-9
  28. L. Ljung and T. Glad: Modeling of Dynamic Systems. PTR Prentice Hall, 1994.   CrossRef
  29. V. Lunel and M. Sjoerd: Identification problems in functional differential equations. Proc. 36th IEEE Conference on Decision and Control IEEE 5 (1997), 4409-4413.   CrossRef
  30. N. MacDonald: Time-lags in Biological Models. Lecture Notes in Biomathematics, Vol. 27, Springer, Berlin 1978.   CrossRef
  31. N. MacDonald: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge, 1989.   CrossRef
  32. N. Meshkat, M. Eisenberg and J. J. DiStefano: An algorithm for finding globally identifiable parameter combinations of nonlinear ode models using Gröbner bases. Math. Biosci. 222 (2009), 61-72.   CrossRef
  33. Y. Orlov et. al: On identifiability of linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 8, 1319-1324.   DOI:10.1109/TAC.2002.801202
  34. G. Orosz, J. Moehlis and R. M. Murray: Controlling biological networks by time-delayed signals. Philosoph. Trans. Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1911), (2010), 439-454.   DOI:10.1098/rsta.2009.0242
  35. G. Palm and T. Poggio: The Volterra representation and the Wiener expansion: validity and pitfalls. SIAM J. Appl. Math. 33 (1977), 2, 195-216.   DOI:10.1137/0133012
  36. Z. K. Peng and et. al: Feasibility study of structural damage detection using narmax modelling and nonlinear output frequency response function based analysis. Mech. Syst. Signal Process. 25 (2011), 3, 1045-1061.   DOI:10.1002/acs.1264
  37. H. Pohjanpalo: System identifiability based on the power series expansion of the solution. Math. Biosci. 41 (1978), 21-33.   DOI:10.1016/0025-5564(78)90063-9
  38. J. F. Ritt: Differential Algebra. American Mathematical Society, Providence 1950.   CrossRef
  39. M. R. Roussel: The use of delay differential equations in chemical kinetics. J. Phys. Chem. 100 (1996), 20, 8323-8330.   DOI:10.1021/jp9600672
  40. W. J. Rugh: Linear System Theory. Prentice Hall, New Jersey 1996.   CrossRef
  41. J. Schwaiger and W. Prager: Polynomials in additive functions and generalized polynomials. Demonstratio Math. 41 (2008), 3, 589-613.   CrossRef
  42. C. J. Silva, H. Maurer and D. F. M. Torres: Optimal control of a tuberculosis model with state and control delays. Math. Biosci. Engrg. 14 (2017), 1, 321-337.   CrossRef
  43. H. Smith: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York 2011.   CrossRef
  44. T. Söderström and P. Stoica: System Identification. Prentice-Hall, 1989.   CrossRef
  45. A. K. Swain, E. M. A. M. Mendes and S. K. Nguang: Analysis of the effects of time delay in nonlinear systems using generalised frequency response functions. J. Sound Vibration 294 (2006), 1-2, 341-354.   DOI:10.1016/j.jsv.2005.11.013
  46. M. Vághy, G. Szlobodnyik and G. Szederkényi: Kinetic realization of delayed polynomial dynamical models. IFAC-PapersOnLine 52 (2019), 7, 45-50.   DOI:10.1016/j.ifacol.2019.07.008
  47. S. Vajda et. al.: Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models. Chem. Engrg. Commun. 83 (1989), 191-219.   DOI:10.1080/00986448908940662
  48. S. Vajda, K. Godfrey and H. Rabitz: Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Math. Biosci. 93 (1989), 217-248.   DOI:10.1016/0025-5564(89)90024-2
  49. S. Vajda and H. Rabitz: Isomorphism approach to global identifiability of nonlinear systems. IEEE Trans. Automat. Control 34 (1989), 220-223.   DOI:10.1109/9.21105
  50. A. F. Villaverde and A. Barreiro: Identifiability of large non-linear biochemical networks. MATCH - Commun. Math. Comput. Chemistry 76 (2016), 2, 259-296.   CrossRef
  51. E. Walter: Identifiability of Parametric Models. Pergamon Press, Oxford 1987.   CrossRef
  52. E. Walter and Y. Lecourtier: Unidentifiable compartmental models: what to do? Math. Biosci. 56 (1981), 1-25.   CrossRef
  53. E. Walter and Y. Lecourtier: Global approaches to identifiability testing for linear andnonlinear state space models. Math. Comput. Simul. 24 (1982), 472-482.   DOI:10.1016/0378-4754(82)90645-0
  54. E. Walter and L. Pronzato: On the identifiability and distinguishability of nonlinear parametric models. Math. Comput. Simul. 42 (1996), 125-134.   DOI:10.1093/clinchem/42.1.125
  55. E. Walter and L. Pronzato: Identification of Parametric Models from Experimental Data. Springer Verlag, 1997.   CrossRef
  56. L. Weijiu: Introduction to Modeling Biological Cellular Control Systems. Springer Science and Business Media, 2012.   CrossRef
  57. A. F. Villaverde: Observability and Structural Identifiability of Nonlinear Biological Systems. Complexity, 2019.   CrossRef
  58. A. F. Villaverde, A. Barreiro and A. Papachristodoulou: Structural identifiability of dynamic systems biology models. PLOS Comput. Biology 12 (2016), 10.   DOI:10.1371/journal.pcbi.1005050
  59. V. Volterra: Theory of Functionals and Integral Equations. Dover, New York 1959.   CrossRef
  60. X. Xia and C. H. Moog: Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans. Automat. Control 4 (2003), 330-336.   CrossRef
  61. Y. Yuan and Y. Li: Study on EEG time series based on duffing equation. In: International Conference on BioMedical Engineering and Informatics, Vol. 2, Sanya S2008, pp. 516-519.   CrossRef
  62. H. Zhang, S. A. Billings and Q. M. Zhu: Frequency response functions for nonlinear rational models. Int. J. Control 61 (1995), 1073-1097.   DOI:10.1080/00207179508921946
  63. J. Zhang, X. Xia and C. H. Moog: Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Automat. Control 51 (2006), 2, 371-375.   DOI:10.1109/TAC.2005.863497
  64. G. Zheng, J. P. Barbot and D. Boutat: Identification of the delay parameter for nonlinear time-delay systems with unknown inputs. Automatica 49 (2013), 6, 1755-1760.   DOI:10.1016/j.automatica.2013.02.020