Kybernetika 57 no. 1, 118-140, 2021

Output feedback $H_\infty$ control of networked control systems based on two channel event-triggered mechanisms

Yanjun Shen, Zhenguo Li and Gang YuDOI: 10.14736/kyb-2021-1-0118


In this paper, we study dynamical output feedback {$H_\infty$} control for networked control systems (NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides of the sensor and the controller. The output feedback $H_\infty$ controller is constructed by taking random network-induced delays into consideration without data buffer units. The controlled plant and the output feedback controller are updated immediately by the sampled input and the sampled output, respectively. By using the approaches of time delay and interval decomposition, linear matrix inequality (LMI) based sufficient conditions are presented to guarantee that the closed-loop system satisfies $H_\infty$ performance. Finally, we provide numerical simulations to illustrate effectiveness of the proposed method.


LMI, event-triggered mechanism, output feedback $H_\infty $ control, interval decomposition, NCSs


93B52, 93B70


  1. S. Boyd: Linear Matrix Inequality in Systems and Control Theory. SIAM, Philadelphia 1994.   CrossRef
  2. P. Chen and M. R. Fei: An improved result on the stability of uncertain TCS fuzzy systems with interval time-varying delay. Fuzzy Sets Systems 212 (2013), 97-109.   DOI:10.1016/j.fss.2012.06.009
  3. P. Chen and Z. Jin: Event-triggered output-feedback $ H_{\infty}$ control for networked control systems with time-varying sampling. IET Control Theory Appl. 9 (2015), 1384-1391.   DOI:10.1049/iet-cta.2014.0876
  4. P. Chen and Z. Jin: Delay-distribution-dependent load frequency control of power systems with probabilistic interval delays. IEEE Trans. Power Systems 31 (2016), 3309-3317.   DOI:10.1109/TPWRS.2015.2485272
  5. P. Chen and T. Yang: Event-triggered communication and $ H_{\infty}$ control co-design for networked control systems. Automatica 49 (2013), 1326-1332.   DOI:10.1016/j.automatica.2013.01.038
  6. L. Ding, Q. Han and X. Zhang: Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism. IEEE Trans. Industr. Inform. 15 (2019), 3910-3922.   DOI:10.1109/TII.2018.2884494
  7. M. Donkers and W. Heemels: Output-based event-triggered control with guaranteed $\mathcal{L}_\infty$ gain and improved and decentralized event-triggering. IEEE Trans. Automat. Control 57 (2012), 1362-1376.   CrossRef
  8. H. Gao, X. Meng and T. Chen: Stabilization of networked control systems with a new delay characterization. IEEE Trans. Automat. Control 53 (2008), 2142-2148.   DOI:10.1109/TAC.2008.930190
  9. X. Ge, F. Yang. and Q. Han: Distributed networked control systems: a brief overview. Inform Sci. 380 (2017), 117-131.   DOI:10.1016/j.ins.2015.07.047
  10. K. Gu: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control. 3 (2000), pp. 2805-2810.   CrossRef
  11. Q. Han: Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41 (2005), 2171-2176.   DOI:10.1016/j.automatica.2005.08.005
  12. Q. Han: A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica 45 (2009), 517-524.   DOI:10.1016/j.automatica.2008.08.005
  13. S. Hu and D. Yue: $\mathcal{L}_2$-Gain analysis of event-triggered networked control systems: a discontinuous lyapunov functional approach. Int. J. Robust Nonlinear Control 23 (2013), 1277-1300.   DOI:10.1002/rnc.2815
  14. F. Li, L. Gao and et al: Dual-side event-triggered output feedback $H_{\infty}$ control for NCS with communication delays. Int. J. Control Automat. Systems 16 (2018), 108-119.   DOI:10.1007/s12555-016-0407-x
  15. K. Liu, E. Fridman and K. Johansson: Dynamic quantization of uncertain linear networked control systems. Automatica 59 (2015), 248-255.   DOI:10.1016/j.automatica.2015.06.041
  16. X. Meng and T. Chen: Event detection and control co-design of sampled-data systems. Int. J. Control 87 (2014), 777-786.   DOI:10.1080/00207179.2013.857047
  17. J. Qiu, H. Gao and S. Ding: Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Industr. Electron. 63 (2016), 1207-1217.   DOI:10.1109/TIE.2015.2504351
  18. Y. Shen, F. Li, D. Zhang and Y. Liu: Event-triggered output feedback $ H_{\infty}$ control for networked control systems. Int. J. Robust Nonlinear Control 29 (2018), 166-179.   DOI:10.1002/rnc.4380
  19. G. Walsh and H. Ye: Scheduling of networked control systems. IEEE Control Systems 21 (2001), 57-65.   CrossRef
  20. R. Wang, H. Jing and J. Wang et al: Robust output-feedback based vehicle lateral motion control considering network-induced delay and tire force saturation. Neurocomputing 214 (2016), 409-419.   DOI:10.1016/j.neucom.2016.06.041
  21. M. Wang and J. Qiu et al: A switched system approach to exponential stabilization of sampled-data T-S fuzzy systems with packet dropouts. IEEE Trans. Cybernet. 46 (2015), 3145-3156.   DOI:10.1109/tcyb.2015.2498522
  22. Z. Wang and F. Yang et al: Robust $ H_{\infty}$ control for networked systems with random packet losses. IEEE Trans. Syst. Man Cybernet. B Cybernet. 37 (2007), 916-924.   DOI:10.1109/TSMCB.2007.896412
  23. H. Wang, Y. Ying, R. Lu and A. Xue: Network-based $ H_{\infty}$ control for singular systems with event-triggered sampling scheme. Inform. Sci. 329 (2016), 540-551.   DOI:10.1016/j.ins.2015.09.049
  24. H. Yu and P. J. Antsaklis: Event-triggered output feedback control for networked control systems using passivity: achieving $\mathcal{L}_2$ stability in the presence of communication delays and signal quantization. Automatica 49 (2013), 30-38.   DOI:10.1016/j.automatica.2012.09.005
  25. D. Yue, Q. Han and P. Chen: State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II: Exp. Briefs 51 (2004), 640-644.   DOI:10.1109/TCSII.2004.836043
  26. D. Yue, E. Tian and Q. Han: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Automat. Control 58 (2013), 475-481.   DOI:10.1109/TAC.2012.2206694
  27. L. Zha, J. Fang and J. Liu: Two channel event-triggering communication schemes for networked control systems. Neurocomputing 197 (2016), 45-52.   DOI:10.1016/j.neucom.2016.01.044
  28. X. Zhang et al.: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica 7 (2020), 1-17.   DOI:10.1109/JAS.2020.1003075
  29. L. Zhang, H. Gao and O. Kaynak: Network-induced constraints in networked control systems-a survey. IEEE Trans. Ind. Inform. 9 (2012), 403-416.   DOI:10.1109/TII.2012.2219540
  30. X. Zhang and Q. Han: Event-triggered dynamic output feedback control for networked control systems. IET Control Theory Appl. 8 (2014), 226-234.   DOI:10.1049/iet-cta.2013.0253
  31. D. Zhang, Q. Han and X. J: Network-based output tracking control for TCS fuzzy systems using an event-triggered communication scheme. Fuzzy Sets Systems 273 (2015), 26-48.   DOI:10.1016/j.fss.2014.12.015
  32. X. Zhang, Q. Han and X. Yu: Survey on recent advances in networked control systems. IEEE Trans. Ind. Inform. 12 (2016), 1740-1752.   DOI:10.1109/TII.2015.2506545
  33. D. Zhang, Q. Han and X. Zhang: Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Trans. Cybernet. 50 (2020), 2462-2474.   DOI:10.1109/TCYB.2019.2924450
  34. W. Zhang and Y. Li: Modelling and control of networked control systems with both network-induced delay and packet-dropout. Automatica 44 (2008), 3206-3210.   DOI:10.1016/j.automatica.2008.09.001
  35. D. Zhang, P. Shi and Q. Wang et al: Analysis and synthesis of networked control systems: a survey of recent advances and challenges. ISA Trans. 66 (2016), 376-392.   DOI:10.1016/j.isatra.2016.09.026